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REPORT

A.

Statement of the Problem Studied

The problem we proposed to investigate is about various electronic pro-
properties related to point defects in the Hgl_xCdee alloy system. Since
the Hgl_xCdee has substitutional randomness as an alloy crystal, the
effects of the alloy fluctuational potential on the energy gaps and

defect levels are investigated in detail. The conduction band edges for
the Hgl_xCdee alloy are known to be nonparabolic. The effect of non-
parabolicity on shallow donor levels, as well as on electronic transport
are studied. We have also looked into the natures of electronic states
associated with native defects in Hgl_xCdee, especially those with Hg
vacancies. An interesting phenomenon about the mobility of the Hgl_xCdee

near zero band gap is also studies with experimental results.
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B.

SUMMARY OF THE MOST IMPORTANT RESULTS

a.

Alloy effects in Hg,  Cd,Te

A large number of investigations has been directed to alloy effect in
solids. Most of them are still qualitative. Only a few of them are for
the II-VI or III-V compound alloys. An important result from our study is
that the alloy fluctuation potential in HgCdTe system (and in general for
other semiconductor alloys) can be calculated from a superposition of
pseudopotentials of each atomic species defined in the parent compounds.
This approach is well known in regular crystals. However, the alloy
fluctuation potential is the small differences between the pseudopotentials
of each atomic species, which are usually not defined to great absolute
accuracy. But it turns out that if a consistent procedure to obtain the
pseudopotential parameters for parent compounts is adopted, the result is
very satisfactory. Furthermore, the effect of alloy fluctuation potential
can be calculated by a perturbation theory based on the virtual crystal
approximation (VCA). It is known, especially for metal alloys, that for
many alloy systems such a simple approach for alloy potential is not valid
due to the self-consistent requirement on the potential. In that case, the
coherent potential approximation (CPA) is claimed to be a better scheme. We
found for Hgl_xCdee, the usual perturbation theory is very good. This is
attributed to the great band width of HgCdTe and the weak perturbation
introduced by the substitutional disorder. A test of our theory has been
carried out by computing the alloy broadening of the bound exciton lines in

HgO 52Cd0 48Te. Our theoretical value of broadening agrees quite well with
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experimental results. In contrast, one recent CPA calculation on alloy
broadening of exciton lines in alkali halides found line widths 10-20
times smaller than the experimental data. The details of this test will
be published. The theory is applied to the alloy broadening of defect
levels in Hgl_xCdee and band gap bowing in Hgl_xCdee. These are

published as listed in Section I11.C

Native Defects in Hgl-xCdeE

Hg vacancies in Hgl_xCdee has long been suspected to be responsible for
p-type behavior in some prepared material. Many detailed investigations
have been carried out for the single vacancy in Si, some for vacancies in
III-V compound, but few for the II-VI compound, the cation vacancy in II-VI
compound is in fact simpler than that in Si or III-V compound, because the
introduced perturbation is weaker.

We have carried out intensive calculation for the Hg vacancy and antisites
based on the generalized effective mass approximation. The ideal vacancy
has been treated by empirical tight binding method (Swartz, Daw and McGill,
1981). We approximate the ideal Hg vacancy in the VCA by the ienic model
potential screened by the k-dependent dielectric function. A self-

consistent interaction is carried out for the case of binding two holes.

The hole-hole interaction between the s envelope functions (which are expanded

in 21 Gaussian type orbitals) is screened by the k-dependent dielectric
function. The other interactions with the d envelope functions (also in 21
GTOs) are screened only by the dielectric constant in order to make the

calculation tractable. We find that the first and second hole ionization

-5-
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!l energies are 20 and 35 meV respectively for X = 0.25, and 47 and 86 meV R
o r,_.'.
= respectively for X = 0.48. The antisite double acceptor GaAs has been 2}{‘
o P
. observed recently in GaAs (K.R. Elliott, et al., 1982) with the first ;Ef
¢
' and second ionization energies being 77 meV and 230 meV, and our model E
;ff obtains results within 60% accuracy. This agreement established the h
E validity of the theory for double acceptor. Since the Jahn-Teller
v

distortion will only further lower the level, we conclude that the Hg T

vacancies are shallow acceptors for X < 0.5. Self consistent calcula-

tions have also been carried out for the antisite CdTe. Our results if;

indicate that the first hole ionization energy is 1.47 eV for X = 0.48 §$ﬁ

and 2.38 eV for X = 1. The results suggest that the acceptor levels of ? -

neutral CdTe antisite are inactive and also that the ideal anion vacancy ) :igi

is inactive. The TeCd antisite is currently speculated to be a major
defect in nonstoichiometric p-type sample (C.D. Jones et. al., (1982). o

Our calculation using the T valley indicated that Tey is a shallow

double donor. However, states composed of L valleys may provide deep s
donor levels as suggested by our calculation of CdTe' £i3§
The details of these findings are presented in published papers. Some :;;

of the yet unpublished results are put in the appendixes. f -
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APPENDIX A

Chapter |11
SELF-CONSISTENT GEMT OF DOUBLE ACCEPTORS

3.1 THE CATIONIC VACANCIES IN MERCURY CADMIUM TELLURIDE
3.1.1 Introduction and Experimental Data

HgCdTe is an important 1I-Vi compound alloy, and has been known
as a good candidate for far-infrared detectors. The usefulness comes
from the linear variability of the bandgap E’ with x, which is the mo-
lar concentration of CdTe in the alloy. The bandgap varies from -0.3
eV ( semi-metal) for HgTe to 1.6 eV for CdTe. The bandstructure for
each x can be calculated.from pseudopotential method based on the
Virtual Crystal Approximation (VCA)®% ¢ /¢2  As an example, the
band structures of CdTe and HgTe are shown in Fig. 3.1.

Elliot, et al'’, reported electrical transport and photoluminescence
(PL) measurements for gmp_grzs‘a_{eq“?_-}X?iigcglg.’ In the electri-
cal measurement, the gqt‘:ggt‘c)\t:“icz[\“i\zaﬁt_ign._eg_e:gy _Ea ranged from 15 to
22 meV for x in the range 0.26 to 0.34; and from the PL measure-
ment, E4 ranged 10~-16 meV for x=0.30~0.34 and 25 meV for x=0.50.

Scott, Stelzer and Hager'?

measured a p-type gqmg:ensate»d Hg“Cd._Je
and obtained the acceptor level to be 14%1 meV. They did not give

the nature and source of this p-~type properties. Hunter and McGill

6
did luminenscence measurements on HgCdTe alloys', and estimated that




- . - W w ow e & sWew

f v
L P

_. the acceptor binding energies in x=0.32 and x=0.48 materials are 14.0
- 4.0 and 15.582.0 meV. This impurity was thought to be the Hg va-

cancy. However, during sample preparation, the sample was goid

j:f plated and annealed in Hg vapor. This process could dope the crys- ot
tals with Au and reduce the number of Hg vacancies. Therefore, the _:
. acceptor for this p-type sample is _gighgr iubstituti’gggl_”A_(_J_\c_;_c_lig _va- E-E
cancies. <5

: =
All the above experimental results seem to be in good agree- ;i

ment. Our task is to do a theoretical study on p-type HgCdTe so as F-:—;

to get a better understandings of the source of the defect states of .‘r\
these acceptors. ' u;

-

3.1.2 General theoretical model

1

We will apply the shallow level approach for this HgCdTe acceptor ARG

problem. We will calculate two possibie cases: I, A simple acceptor (A L'j
,h*) which exists when an Au atom occupies the cationic site. 2_. A
double acceptor in the neutral (A ;h* ,h’) state. and its ionized

states (A‘;, h*), which can occur due to a cationic vacancy. L—-

in the first case, the Au atom has only one valence electron, while

the Hg and Cd atoms have 2 ( The "Au is isocoric with Hg ). The

impurity potential is well represented by a -1 point charge center, L—
ATITCEGT e o e | = o i P

screened by the dieiectric response of the surrounding valence elec- f::::j
'-'...J

trons. This is a simple acceptor problem, the calculation method has S

been described in Chapter 2.
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The Luttinger parameters for Hg,_,Cd‘ Te are functions of x. Some

empirical formulae for these parameters are available in Weiler's arti-

cle!?. We first determine the band gap by:

L. = —304 4+ 23T () am)+ /P69 x + 4
/ II+T

(3.1.1)

where T is the temperature in .K, and E’ is in meV. The Luttir.tger

parameters are functions of g :
>, = 3.3+ L333/E,
—~. = 0./ + 3/47/5;,
0.9+ 3/6]/E, (3.4.3)

I
]

The temperature T is set to be 0 since we are interested in low temp-

B T I T e P

erature acceptor levels. The dielectric coefficient & s also a fuction

e~ . —— e

ij’f.’v and the curve of & vs. x is available from Fig. 85, P.93 in
Dornhaus and Nimtz's article®®. All the necessary parameters ¢, 7, t':
7., D, E’, effective Rydberg R, and effective Bohr radius a* are then -.-j
calculated and listed in Table 3.1. 1
For the 2nd case, the cationic vacancy problem is a many body L__%
problem. During the crystal growth of HgCdTe alloy, Hg or Cd va- :
cancies can be formed in the lattice. Hg and Cd atoms are randomly ' -
distributed in the cationic sites but with Cd molar concentration equal - L,A

to x. A schematic representation of such a cationic vacancy is shown

in Fig. 3.2
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This vacancy probiem has been treated by Swarts et al?® using a £

tight binding Green’'s function method. We would like to point out that
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in this case, the cationic vacancy introduces a -2e defect charge cen-
ter, which is much weaker thah the perfect crystal potential. The de-
fect state wavefunction is very spread out (not localized enough to
have a tight binding treatment). A shallow level method of GEMT is
more suitable. However, the deep level method is good for a Si va-
cancy in Si, in which the defect charge center, -ie, is strong and
comparable to the crystal field potential. This Si vacancy problem has

been treated in several papers both with and without the Jahn-Teller

——— * TN~

3ffg§t_ (l_a_t_tice relaxation). The [I-VI vacancy is a simpler probiem
than the Si vacancy.

Another way to justify that the perturbing potential can be de-
scribed by a -2e point charge is to look at the the model potential
plot of Hg and Cd ions (Fig. 3.3). A model potential is a potential
which divide the lattice ion potential into two regions: the core region
and the region outside the core. Inside the core, the lattice potential
is replaced with the square well potentials; outside the core, the po-
tential varies like the Coulomb potential. The model potential can give
the correct eigenvalues and wavefunctions in certain energy range.
The model potential we used in our plot is the Heine-Abarenkov model

potential which is defined by:

S AP f=o0.l2  for r<Ry

__%_ fov Y > Rm
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l The radii of the sphere of the core region R,.-1 are less than 33‘ ( a, ‘.:'r'.‘_-:
- : S
20.53 R---Bohr radius), and are smaller than the lattice constant of :',-_:.'.f_
*- HgCdTe. It is seen from this model potential viewpoint that except for oy
I. this small central cell region, the defect potential of the cationic va- :::}\

cancy can be well described as the absence of this point charge po- =
tential. However, in the central cell region, the point charge Coulomb
potential is apparently deeper than the mode! potential and will result

in an overestimate of the binding energy. Due to the smallness of this

v
7

central cell region, and A2 A.l Ao are not too different from the
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Coulomb potential at RM the overestimate is small.
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For the double acceptor, Z,=-2, we will carry out the ¢ '-ulation

Sy % s
S

for (A:h' ,ht) and (A;h'). For (A";h'). the singly charged ionized I <

state can be treated exactly like a_simple acceptor problem except the

defect potentiai..should. be .‘.2.'2.%?- For the neutral double acceptor (A;L

;h" ,hf), the total Hamiltonian has to include the Coulomb interaction:
- - .| 2
H(rl, ) = H.(.#;)‘f‘ ”o(rs)+-=—=7 (z/a)
' Y;‘- y/ . -

where H.(T-;) and H.(_re)_ are the single hoie Hamiltonian operators. We
know from Chapter A that H.(_:) is reducible to a radial coupling
equation of GEMT. To solve eq. (3.1.4), we reduce it to the single
hole Hartree-Fock operator through the standard variational principle: -
W= = M. <’3)+/¢"'(¢') -!-5—’—-_37 DU d>v
> -

and

o= £ 9 (3.1:5)
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' where ?'(;")is the known orbital. Then, the solution are iterated for
l a self-consistent 4(!’).

. The Hartree-Fock equation still needs to be simplified. First, we
! can simplify the Coulomb interaction matrix element, which will be de-

scribed in the coming subsection.

! 3.1.3 The Coulomb matrix element
Both holes in the double acceptor at ground state have T" symmetry,
and angular quantum number F=3/2. Because of Pauli exclusion rule,
! these two holes can not occupy the same quantum state, i.e. their F;
's ought to be different (F; can be one of 3/2, 1/‘2',_ -1/2, -3/2).

The Coulomb matrix element:

- —
¢ ¢F" 50 99ch'¢.)[ —ﬁ’fﬂl ¢F°'(V')CPF2.( 7))

* = D3 g3
= /f¢;: (;t)gbr,‘(_?).) -I-’)’_:'?"-]- ¢/‘7¢, (») ¢Fz.(7")d r,d y;
(3.1.6)

will be different for different choices of F, and F;. But the differ-
ence will be small and unimportant when we perform the Hartree-Fock

iteration. We will fix the small differences in the later section as we

Vm e

discuss the j-j coupling and the exchange term. For convenience, we
select F,=3/2 and F;=-3/2 to find the Coulomb matrix element. Our
goal is to find a radial form for the double integral of eq.(3.1.6), so
as to make it compatible with the radial operator in the simple accep-

tor GEMT equation.
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The T', symmetry hole states, as mentioned in Chapter 3, is ex- L-
.

pressable in the s-like and d-like radial envelope functions multiplied =
'«;.:-‘

by their angular quantum states (which is a coupling of the orbital C\'r
angular momentum and the Bloch states effective 'spin’), i.e. E‘(‘f
_3 3. - - 43 o

‘P:;/» = J["" [L=0,J=%,F=%, 2~ 13> S

+}(Y),L=2)j=—§-’ F:.%.’ Fo= i—é).(; I 7) ‘;

Our first step is to decouple the angular kets. By refering to the
Clebsch-Gordan coefficient table, the angular kets are decomposed
into the spherical harmonic Y|m space and the effective spin J=3/2

functional space: ‘

3 -3 43N = .
[L=0 J=% F=% Fz-i T) Yoo X1

3 3 = 43 .
! jL=2 J=x F=—< Fo=t1<) R
: p Y X5 %
: :E \T“‘ Xi}{ :t T ‘r, 1’7(‘!4 s Yt b & Tdrs ( ;/ 3) .'-:“
i where %(I‘f 372, 1/2) represents the spinor 3/2 states. We will as- .‘T
s
sume an approximation that the spin states X are orthogonal to each .‘:l.'_f;.

other, and X__ire independent_of the radial_part and_the Y, space.

This approximation is very good for the spread out defect states of

-
. ’w" - . [ ,‘.‘,
o el .

shallow acceptors, but not for the localized state of deep levels. The

Couilomb interaction integral should not only be integrated over the

i spatial variable r, , ry , but also be intergrated over the spin part : b
X, ond Xa. E:::::-'.
We use 3 to denote the Couljomb operator ’-33'-._-_.—- In our approxi- S
Y"’YI :- :
i mation, 3 has nothing to do with the spinor states. Thus, we can se- r
y —
' -32-
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parate out the spin functions in the <PF’ and carry out the spin inte-
grations on particle 1 and particle 2 based on their orthogonal prop-
erty. This step can greatly reduce the number of terms in the final
expansion of the matrix element.

We use a2 simple tabie to indicate the result after the integration .of
the spin states of the first particle CP;‘@,‘ ,where f,, g, are radial

envelope functions of ?‘f’:):

Cpi~ - ﬁ:

ywtesgration frToox% .\E?,Tuxs‘ ‘E }')/"YK i ’,)’“X:;{
Fydxn | FErSe A£FIYY. O 0
Lot E it t0% 0 o

FEwnixll o o T DRI

*
-F Iy o o o < 0 Yoo

<;./-7)

-
6 terms are left for the first particle r, . Similarly, spin integration
. - .
of the second particle r, also leaves 6 terms, where f,, g, are radial
(.)
i Yy
envelope functions of ‘fK\k

;”Jw | — -
,'-{‘};utb'\.i 'f.Yo.X_% -J'{.' 7,)3,%_& ‘E}»T.Jy_é :}L# 7’%" Yé
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(32.1.19
Picking any one term in the first table, multiplying it with the

-l Coulomb operator@and any one term in the 2nd table, then integrate
over‘)e, and ’Y; will give us one term in the final expansion. There-
fore, we have 6 x 6 = 36 terms to evaluate. For example,
frYdf Yoo | F £ Yoof Vo)
— / g / P, YokinofurdYoiny l_ﬁ’gﬂfm;«.,wﬁwy&w

is the first term.

We treat the general term

TN A7 NLe) XL | ‘}‘ | &y ) Vg 2) 4a ) Vi i)

like in the atomic physics. The operator'g\ is expandable into the Y|m

space of'F\, and—r’; through the addition theorem:

. R et
e P W A . Lot

— = -+ £ y
-V = ==
Y (;./.1/)

where r. means the smaller one, r, the larger one of r, and r,.

With eq.(3.1.]]) ,eq.(3.1.6 ) is further separable into the product

-- —_—— T
. H KA
[t 4 ORI

of a radial integral and two angular integrals, summed over all 36

-
[ ]

terms:

TR ARERY RC) ARER (O] WNSY MEHY RoE) A

A)
=2 ; Ca (L7 Ly ”4;)64(ﬁ¢~,,,£w~,))‘\" (L L, B 24D
(3.).1%)
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where
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A, 7’4’ T
o Jo £ (3.0- 13)

is an radial integral.

04‘(1‘ o, .@ /)‘///u-ﬂo(ea(f YL (’r’ﬁuC&f)Yz - (8 f)

M= m)',—-m (;,/./4)
is called the Gaunt's coefficient, and is equal to
£: 4 2,
e/) FI.-M) (W’)(J/*') C— ’7)( 0 o)

where the parentheses ake are 3-j symbois. Gaunt's coefficients
Ae

are tabulated in some books®?®’*¢?.

These 36 terms can be calculated one by one with the help of

Gaunt's coefficients. For example, the first term
<t Yot Yol 31§ Touir 7o)
=3 cato 0,0 calo 0,0 ) RELffi )
R f ff )
R £ £ 1) (3.7.15)

i

because only ¢ (0,0,0,0)=1 and all other c=0.
After we calculate each of the 36 terms, the total sum for the Cou-

lomb interaction matrix element is found to be:

<¢;/.,¢ M.] ?%? !/.>
Rk fufifo) + RUG 3PP+ R 5./

—
———
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.,L;‘:“: R 9 f 4. (3.1.76)
All terms are radial integrals.

&)
The R term is very small compared to the other terms and can be

neglected in our calculation.

3.1.4 Derivation of the radiai Hartree-Fock operator
The double acceptor wavefunction can be written as an anti-sym-
metrized product of the two individual hole wavefunctions (ln our cal-

culation, we have assumed one hole with F,=3/2, the other with F,

J 99,_/‘_6;:) 96-3/.5’?9
2 2 e, ol =
V(Y"Y‘)—adf¢%(ﬁ)¢-% YJ E ?% (‘,.{) 4,_%(.;1

(3.2.17)
The binding energy E is given by the matrix element of the total

Hamiitonian
E = th'("/.”s)/)‘/a,t (_:"‘;A")}\P(Y”Y‘D N o
= (G| HIN P + <P <l .o | 45D

2 = 3 3
‘f‘/f%*d,) ¢,*’(?1)T$i_=y-l7 @, ) ArId™ A7

2 S 3
_../j ¢,*F>$)¢j’(fa-}?z—37 G @) o7 o'
L (3.7.18)

The first two terms in (3.1.18) are the single hole Hamiltonian, the

third term is the Coulomb interaction and the fourth term is the ex-

change interaction.
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We know from the simple acceptor EMT, the H,(r) can be approxi-
mated by the spherical model H;/A and the angular integration can be

performed by the reduced matrix element method and 6j symbols. The

single hole part is reduced to the radial integral bracket:
(B[ Hpl) = <Flrlfr+flanlp+¢ slraulf> +< gl }l)p
3./

where J2,, £, fU, Slw are radial operators defined in eq.(2.3.2) of

. .. v e e
- LT et A

2 2 "l ,‘,' LR N NN s
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Chapter 2. The Coulomb matrix element are known to have a radial

form derived in section 3.1.4, and the exchange term has a similar
form,but with a smaller value.

The (Q,){.,hf) term can then be expressed in the radial form: o

(P P) = (ffaalfy + il +< pladfD+< Pl 3D hey

+ <f"’ﬂ"”f‘>" <f,/.n.,/;,>+ <f‘/"""b“7+<?‘/&"j’> R

+ RO FF S+ RS 3t ) + RV F 3 e

(s ::‘
+ 52 RV (fr g g (3./.320)
It is understood that the above brackets notation only means the ra- o

dial integrals. The normalization of wavefunctions then require that

<¢:,¢;> = <f//f:>‘f<5,/?,>=/’ ':-

an

T gy = Felfr HB=/

v ‘
e
Pty a
RO
KB ST

(3.1.21)
and the orthogonality (¢,/¢‘> =0

1
The variational principle requires to minimize ¢ M, el under ij
ot

the normalization constraints:

(P> = ;7

..........................
.................................................
.............................

.....
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g )
Ly W)

It is natural to use the Lagrangian multiplier method for minimiza-

tion

5[ P Hat> = 2, B3> = Xa<BlP) =X <4 18.0)

=0 (3.].3%)
We know there exists a set ¢,'and Cr‘, by finding the appropriate li-

near combination of @, and 4’,,. This linear combination will not
change (v.’;fH,;H’) but will make \,.= 0 (no off-diagonal eigenva- L'i

lue term). This diagonalized \,, As and CP,', ¢,’ are what we are

seeking. Let us for simplicity drop the primes of ¢ and . we ’

can simply make f_;_}

T L | Heal P> = X <D = A chldD] = 0 %

(343 -

From eq.(3.1.20), (4|HgalP) is reduced to the radial form having (...

-4 variable functions f,, fa, 9, and gy . The variation operator \

then is equivalent to the infinitesimal variations of &%, 1, I3, & \14

respectively. L._

We leave out the exchange terms in eq.(3.1.20) because they are

smail compared to the Coulomb terms. As a standard procedure, we

. can vary f,and 3,from the left while treating f, and §,as known func- P
tions. Varying f,, we obtain .

T el £+ <7 |l g) + //(f:f,)f..% Fifrrinidman

. +[fetrf 2 g, gt rdndn = 3, <Iflfi> =0 L
: (3.1.3¢) :
, Eq.(3.1.34) can be expressed as : r‘
< ofloalf0+ <EF ] 9,y + <6 F Mt [$, 54 <o [ Hot d 3 O
- X, < fff>=0 (3.7.26) 3
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where H..,, Heat. are implicit Coulomb field integrals of f, and g,
defined by

Ho 4, (_r:,f;, %)= Fulr —:’7; f‘Cr‘) . dry

O
)’,;-J‘“("va""‘)g ;_a'z_\/. f;("'-)

P r<1 7 (n) Y‘,tdn
7’7’ >
(3.1.3¢)

In a similar fashion, the variation of J'g' from left reduces to

<d’7r’f"‘-'lff>+ <J‘;,,’ﬂ,,..l},>+ (f};IF/A‘-AJ;J
- A€ ;}’I}'> =9
(3.12]

Coupling eq.(3.1.26) and eq.(3.1.17) , and writing them in a ma-
trix equation form, (the unknowns are f,, g,, and §f,, /g, are arbi-

trary infinitesimal functions, we obtain:

-y

. \ [
_ﬂ.”‘f' )"/,ud’" ﬂn""”‘*ﬂb ﬁ E’HF f/

a. At Heb 7 7
(3.1.2%)

in the above equation, we replaced )_ by the Hartree-Fock eigenener-

gy Euf: Therefore, we have derived the Hartree-Fock equation for

the double acceptor problem.
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3.1.5 The screened Coulomb interaction

The Coulomb interaction between holes is screened by the valence
electrons. We use the linear response theory to consider the electron
redistribution at the presence of a hole charge. This linear theory
approximates the dielectric wavefunction with e(‘q"), '&‘ is the wave

vector. It is known in the 2nd chapter that ¢(q) can be fitted to be:

€9 = €Ea

!I._* 1 9
€ug+p" (3.1.29)
The screened.ggulomb potential due to one hole is

3 2
j—L Ag = cror (3.1-3%)

and &(r) is found to be
-/ ‘
_(3)-}
etry= [1+(éa—)e (3.1.30)

With the dielectric function & (r) in real space, the screened Coulomb

interaction between two holes is

- 2 . 43 3
= ) ( —_ ,'( b?‘rdr"
Vs //f’ e e R AN

- -
where )0(v)=¢*<")?(¢) is the charge density.
Eq.(3.1.32) is a very complicated integral. To simplify it, we use

the Fourier transform technique. The theorem we apply is

/f aa&f) w(?t—dr) UG v dn
‘—'-/ UR (-Z)u&(li{) Uk (R) A4 (1..33)

where the functions with k sub-index means the Fourier transformed

functions.
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The screened Coulomb operator part w('r"', -'r'-‘,) obviously has the

Fourier transform

W (RN = i = 2k 18]
3

A E(R) e h (A+BY) (3./.38)
We know the hole wavefunction ?(7') has the form

9Gr= fonliso Jud, Fod, Fadt goleenged Fd

(3.7.3%)
Let us use the abbreviated notation [1), |2) to denote the anguiar

kets,

¢:(.Y3) =f,(r)ll) -+ 5,(7)/1) .4
Ck(;)) = f,cﬁ 17>+ 8. r? |2 €3.7.38 3?:-’:2253

The Fourier transform of the probability density of one hole is

Poaio= [Iralo4gm ot by gfcde ol -

( ¢ 1> have does not i-fy i-.tq?.vatio-») 3./ ;7) :_
We will simply do the transform for f part only. The g part has a ::t?
complicated angular part, and would be more complicated when inte- E:
grated with the Coulomb operator. It is easier for the f part to be 'r‘lj-:ljlj
Fourier transformed because its angular integration part </{/> =t f{:f:.':j

4’” ~:_

is a constant, and f(r) is expanded in Gaussian basis functions. |t P
can be easily verifiad that the Fourier transform of a Gaussian func- :-."".:-.\".
tion remains a Gaussian function. The final result of the screened V,, :-"_'_'.j_‘
due to the f part of C?, and 4,, is found to be i.~

s~ a. L3 —cdindprdarde) R }
Z} g%' Q:R; 0424 {“,)ﬁe o ‘ %(/i/)oli,
c;./.zj)

where a,’s are expansion coefficients of CP,', Rue A ore coetticerls
L] JI

of $.; awd ¢ is a coutanl.




The screening for the rest terms of f, g or g, g interaction are
not cor_\sidered for mathematical and progrlamming simplicity. These

terms simply preserve their unscreened form:

R'h) 4, 99+ R, Fuig, ) 4 L R f g
(3.1.39

Therefore the only screened term we have included is the f, f in-
teraction. This is none-the-less a good approximation. As we will see
from our computer result, g amplitude is much smaller than the f am-
plitude, and R‘ﬂ(f,, f., f,, f.) is the dominant term (usually of 2
orders larger than the other terms) in the unscreened Coulomb integ-
ral. We have seen that in the GaAs double acceptor, the screening of
f, f interaction increases by about 10% from the bare Coulomb poten-

tial.

3.1.6 numerical methods and resuits
With the radial Hartree-Fock equation obtained in eq.(3.1.28), we can
go through a similar formulation as for the simple acceptor. First, a

pair of known envelope functions f', g' must be assumed. We expand

all known and unknown f, g's in the Gaussian-type basis functions.

The Hartree-Fock equation can be converted into matrix equations:

\ HF o
(A +Ax)c=E"C (3.139) s
where A. is a simple acceptor spherical matrix as given in eq.(2.3.

I7) c is the column matrix of the unknown expansion coefficients of f,

g. A’-.t is the extra matrix due to the Coulomb interaction,and
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The matrix elements have been found to be:

(7 | Mkl gx_/{a.‘a, (,
~+ by b, —— 'ﬂ(de %H:%;:Ln]j

<p:Hionl 3y
(R A AE [,Hr/. +2) z—‘a(;é,d,)
T ‘ +;-r +14‘ e * 3-d't ]
<3 [Hend3p i
RN Y /
.42.,'//,0.;/ [~ ¥y ﬂmF"[f d_fm(a‘& a'g‘)+ T dr )
where 3, a,, b e D¢ 3re the expansion coefficients of the known radial

envelope functions f’and g’ df:)_- oAt ol i«,’ df*“t,d‘r: d;o.,;.d‘:

s ":'-?'_’;l
To inciude the valence electron screening due to the f, f interac-
tion, the matrix block of <7-I;I“_J”[};>is replaced by ' ]
RIASY) / SA RoR
222 &ﬂ_. (¢,-C. e Mfd‘b))x Ozfé.(-z—;:) I
A= Lni __L ...L ._L _'t _L 4L :.:
whare 4= g-=< ("‘-}+ dtu.) ) Y 'Zt . '.:,ifi
amd Co= L an/en (3.0.40
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In the iteration process, we use the known coefficients ai_, bgs of
f', g of one hole, and generate f, g of the unknown hole. At ground
state, both holes have symmetry of T‘,, and have identical radial

parts. We iterate until f=f' and g=g' , we know this is the seif-con-

sistent solution. An antisymmetric product of these two individual hole

orbitals gives the double acceptor wavefunction. The binding energy

-+

EB of the (A.‘; h, h’) system can be found by comparing the total

double acceptor Hamiltonian and the one particle Hartree-Fock Hamil-

tonian, the refation is

E,= 2E"F Ve (1.7.42)

where th is the hole-hole screened Coulomb interaction as defined

earlier.

In experiments, what can be observed are the 1st ionization

energy aE,= E(A"; W)” E(A'} L. %) and the 2nd ionization energy aE.=

| E(A"; W

For the simple acceptor (A-, ho)' we have calculated the envelope

functions at several x values, and the binding energies vs. x are:

X 0.2 o. L 0.6 0.8 ].0

3 33
En- 1t 9.7 14 20 7
{ In meal)
Comparing the magnitude of the binding energies with Hunter and

McGill's'® photoluminescence data, we suggest the levels they ob-

served were the simple acceptor levels from Au impurity.
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For the double acceptor, we calculated (A > h?) and (A% n'?, u") ‘_::15
at x= 0.25, 0.48, 1.0. The aAE,, &E, are (F;} 3.4) plotted to com- ?}‘
pare with the variation of bandgap E,. it is seen that AE, and AE, E""
are much smaller than E), for x20.20. These levels are indeed. shallow ‘
leveis. We also obtain the f, g envelope function plots, for example,
. f,g for x=0.25 are shown in Fig.3.5. It is seen from this plot that E‘
;l the amplitude of g is much smaller than that of f, indicating that this -
- is a f-dominating (or S-like) state. The average radius can aiso be \
i calculated for (A% h?) and (A™ n*, n") by using the formula: :
2 v : N
{r) =[Y(f (r)4 y(r)) Y odr | (3.].%44)
I . the resuits for (A ; h') are 58R, 462 and 33R at x= 0.4, 0.6 and T
, ' 0.8. Averaée radius of (A.‘; h") are 79&, 188 and 108 at x= 0.25, .{,_;
' 0.48 and 1.0. The(rd's of (A% h? ') are larger than the corres- :'E
. ponding (A"; h') states. All  these r>s are Saveoral times :
larger than the central cell radius of just a few Angstroms. Thus,
help to confirm the validity of using the point charge approximation
E as the defect potential.
The same Hartree-Fock scheme can also be extended to the Z,=-3 : ::‘
and ZA=-4 cases for qualitative purposes. These are strong defect S
! centers, the defect states are expected to be localized, and the point %__?‘
charge approximation is no longer appropriate. However, the GEMT t
: still works as an effective method for qualitative resuits. The modifi- S
g cations we need to make from the double acceptor SC-GEMT scheme L

v
' »
Je
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are: 1.The defect charge center should be replaced by -3 and -4.

2.At the ground: state, the Hartree-Fock operator is replaced by:
- 2=
HF > = =D =2 B
) I >ﬂr4 )| p )353ﬁ¢
_ (3.7.4%)
where n (£4) is the number of holes in the system ( The T" symme-

try can hold up to 4 holes with different Fy ). 3. The equation for

binding energy is

w(w—!)
By = ~EX - —L;— Vs (3..4)

For our interest, we calculated the Z, =-3 case ( which has not yet
been related to some kind of defect or defect compiex), the levels are
deeper and the wavefunctions are more localized than the'ZA=-2 case.

The result for ionization energies is

X fa} E/ (meV) sE. ("‘"V) o, ("'"V)
0.2¢ ¢43 7? /70

). 0 a?7 990 1717

We aiso did a qualitative study on ZA=°4 at x=1.0, this can be as-
sociated with the CdT‘ antisite in CdTe, the result based on point
charge approximation (which is crude for this case) is E o . -F

Ak atuh
= 2.4 eV, which lies within the conduction bands. This result can be
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interpreted as that this level is either a deep level or is a resonant EQ_
state (lying in the conduction band). This interpretation is in agree- 'E;.f'_:
W

- -

ment with Swarts, Daw and McGill'$¥ Green's function tight binding N
calculation. F.';",,_

3.2 DOUBLE ACCEPTOR IN GALLIUM ARSENIDE 2

GaAs is a semiconductor material of great interest because of its
high mobility, Gunn Effect and usefulness for making high speed mi-
crowave devices and light emitting diodes.

Some intrinsic defect levels have been observed by photolumines-
cence, Hall measurement and DLTS, .... For example, a main electron
trap level located at about 0.75 meV below the conduction band edge
is suspected to be coming from the As anion antisite (this level is
commonly referred to as the EL level) . This is a deep level double

donor probiem. In this section, we will discuss another type of in-

v

trinsic defect: Gapg cationic antisite, which is a shallow level double -

acceptor problem.

£ "1' ’/ s

.
()

Yu et al?2*’2?% jdentified an acceptor level located at 77 meV from

the valence band edge in their liquid encapsulated Czochralski (LEC)
grown GaAs sample with photoluminescence experiment. This level has
been seen by other authors with different experimental techniques.
A sketch of Yu's PL data is shown in Fig. 3.6. This level was pre-
sent in both p-type conducting and n-type semi-insulating crystals

grown on the Ga-rich melts. The main background impurities are C "

and B. The impurity level of Cu,is a simple acceptor, is located at e

.
.
—
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' 1.493 eV, and is considerably different from the 77 meV (1.441 eV

form the conduction band edge) level. On the other hand, the B im-
purity can aiso be a double acceptor by sitting at an As site. Howev-
' er, local mode spectroscopy shows that the Boron atom is mostly
substitutional in Ga sites and BA: does not occur in p-type material.
The PL spectrum also shows an emission at 1.284 eV with a very small
- intensity compared to 1.441 eV level. This 1.284 eV level (230 meV
from the valence band edge) corresponds to the 2nd ionization energy
E of the double acceptor, which is consistent with the value determined
s by Hall measurement.

ti..'-' Theoretical calculations by Louis and Verges?! shows_ that possible
bound states of cationic antisites in GaAs are A, and T, states. The

T, state has three fold orbjtal degereracy and two fold spin degener-

acy. The neutral state Ga;;" is the T, state occupied by four elec-

trons. Three possible states: neutral, singly charged and doubly

charged states (Ga/:,, Ga,;‘ and Ga;‘) can exist for Ga, antisites. The

method they use is the tight-binding calculation based on the cluster

Bethe-lattice with some fitting parameters. The same method was used

in the study of vacancies in Si surface®?’¢*%,

Our approach to this problem is the Hartree-Fock self-consistent

GEMT we use in Section 3.1. When a Ga atom (atomic number 31) oc-

cupies an As (atomic number 33) site, this isocoric impurity has a

charge deficiency of e, and becomes an Ad acceptor center. The

o
binding energies of two cases: 1. neutral GaA‘ case 2. singly ionized

(Aﬂ; h*), are calculated with the estabiished scheme. As usual,

GaAs
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the perturbing (defect) potential is a valence electron screened -2e

point charge:
2
Um = — 2 gy (3.1.49
The parameters we use in this calculation are &= 0.767, &,=12.56,

and (5=0.93 a.u..

The binding energy of the one hole (Ad; h’) system is -290 meV
according calculation. Thus, 290 meV is our theoretical value of the
2nd ionization energy. Compared to Yu's data, the deviation is 26%.
The 2 hole system (A:‘; h’, h*) with screened hole-hole Coulomb in- b

teraction is found to have the theoretical binding energy of -415 meV,

thus we deduce the first ionization to be 125 meV (IEWW_E(.A‘fI.*,I{) F-T.
1}. Compared to Yu's experimental resuit of 77 meV, the deviation is L
62%. A
The over-estimate of our theoretical result. comes mostly from the i
over-estimate of the perturbing potential in the central cell region by L]
the point charge model. There are two practical ways to look into this
discrepancy. The first way looks at this discrepancy through an em-
pirical interpretation. The overestimate of energy with the point :
charge potential is obtained by taking the difference between the
theoretical value and the experimental value, J E = 290 - 230 = 60
meV. With a rather crude assumption, we assume that in the 2 hole L
system, The overestimate £ E stays the same for each hole ( Apparent-
ly this is not true, since the average hole orbital radius {rin (A_z; h*
, h") is larger than (A" h'). The holes in Ga,;_‘ are farther away F

-49-
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from the central cell region, the overestimate in binding energy

should be smaller than the single hole case), then the binding energy

+

of (A“; h, h’) is overestimated by 2JE = 120 meV (this is an upper

bound for the overestimate). Therefore we obtain an underestimate
for the Eqvawhich is (-415) - (-120) = -295 meV. This implies oE,

= 295-230 = 65 meV, which is a lower bound to the aE, ,and is within

!
.

-15% accuracy to the 77 meV experimental value.

.' ‘l. . s .r"‘
o

The 2nd way to deal with the central call discrepancy is through a

Vet
| RN

semi-empirical adjustment. This method has been suggested by Lipari
et al*? and applied to the Si and Ge spectral. The idea is to add a i,1

semi-empirical short range potential V,,(r) to the screened point

charge potential. This short range correction potential ‘accounts for

the difference in the volume of the ionic core of the impurity atom, as '_L.T';
well as for differences in lattice relaxation around it. A phenomenolo- i
gical approach is adopted to assume V,,(r) to be in this form: ‘
_r,,, =
Vi (¥)= 3(€al) L [P - ¢ ] =
(3.).42) RN
where (L'is selected to fit the ground state energy of (Ad; h* ). We ;':-‘:'.:
found that (;’=1.005 a.u. (slightly different from (3=0.93 a.u.) could L.F
fit the binding energy E g% Jto the experimental value. The defect
potential Y“f and V,, are plotted in Fig. 3.7. It can be seen that V, L
(r) is small and is important only in the central cell region. With this —
V., - we recalculate the (A" h*, h") system, and obtain the first

ionization energysE,= 105 meV, which is within 30% accuracy with ex- ’ [—-.

...............
.........
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perimental result. The envelope functions f, g for the one hole and

the two hole systems are shown in Fig. 3.8.
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Band structure of CdTe and HgTe.

Fig. 3.1.
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E ‘ €, R
(mg'\f) ~ (meV)

32 0.989 17.6 0.220

70  0.976 17.4  0.479
164  0.95 16.7 .25

258  0.923 16.2  1.875
296 0.913 16.1 2.423
kL8 0.877 15.3 3.34
600 0.845 4.2  4.88
638 0.835 4.1 5.19

830 0.8 13.2 7.12
1023 0.775  12.3  9.42

1217 7 0.748  11.8 11.6
S ome  u.8
W12 T0.725  11.0 4.4

1608 0.704 10.8 16.2
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i Chapter IV 'S
SELF-CONSISTENT GEMT OF ACCEPTOR BOUND Z?.
EXCITONS , -
| 4.1 INTRODUCTION {
' Since the first observations by Haynes®?, the radiative transitions :.'ij
due to the recombination of an exciton bound to a neutral impurity ;::‘
! have become more and more important for the understanding of the
low temperature emission spectra in a wide range of semiconductors.
The double acceptor iteration method can be further extended to solve _,.L
- the acceptor bound exciton (A°, X) problem. A neutral acceptor
bound exciton is a system composed of a neutral acceptor A'= (A”, h' :‘:;Z::
. ot
N ) binding a free exciton X=(e”,h') (electron-hole pair). (A®, X) is a “Caki
. 3-body problem with two kinds of moving charged particles.
; For years, people have been studying the binding energies of the -
bound exciton complexes (D°, X) and (A’, X), where (D°, X) is the N
neutral donor bound exciton. Plenty of accurate experimental results o
from photo-luminescence and other methods are available. [t remains a
theoretical problem to interpret the experimental resuits.
"
Most of the theoretical work has been done with a model Hamiitoni- :Z:j-.i
an with a simple spherical valence band and conduction band. The :\
. 3a,3¢.36 :.j::.
Hamitonian commonly applied to (A, X) is -
RIS Lod o dypad =L - Ly *
H=—V'/"V;"'0'va«— 7-(‘57,"7—';,-&.)* Yin Y@ Tie S
ca.t.l) RN,
\u
oy
=

F‘.
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APPENDIX B

Chapter |1
BANDGAP BOWING

3.1 PERTURBATION THEORY

The effect of alloy fluctuation potential on the compositional depen-
dence of energy bandgap is discussed in two alloys, (Al ,Ga)As
and(Hg,Cd)Te, in order to examine our model of V.. The former is
an important material for semiconductor light source and the latter is
the most widely used material for far-infrared detector. The investi-
gation is carried out through a second-order perturbati\;e calculation
beyond the VCA. Perturbation theory is an imm&ant approximation
method in quantum mechanics.*?’*? It was first used in an extensive
calculation for bandgap bowing in reference 33, although it had been
discussed much earlier in reference 15. In spite of the degenerate
nature of every band structure, the time-independent nondegenerate
perturbation scheme was used in practical calculations without any ex-
planation. We shall also apply the nondegenerate perturbation equa-
tion to obtain second-order corrections to the VCA bandgap but we
will discuss the effect of degenerate states.

Up to second-order the alloy energy level is in the form

EntkRx) = En (RX) + En (), (3.1a)

-62-

.......

AL A
.

Pt
g

.

£
+

CEL PN S LA
LR ¢




EM (kx> = X(1=X)N - (3.1b)
IKnkx [4Vel WROOL™ +2[Cn&x | dvy | RS
W Lo (kxy = EN (&'x)

where the first order correction due to Vf is zero. En(o)('l-zx) and
|nEx) are the VCA band structure and Bloch states oStained from the
EP band calculations without spin-orbit interaction. The Bloch state
[nkx) is normalized to unity over the volume of whole cryatal. N is
the number of unit cells in the cryatal The dVC and dVA are defined
cation and anion disorder potentials. ‘

Figure 3-1 shows the calculated EP band structure of AjAs along
symmetry directions (100) and (111). During the calc‘ulation each
Bloch function is expanded by 65 plane waves, so the energy bands
and expansion coefficents are the eigenvalues and eigenfunctions of
the 65 by 65 complex Hermitian matrix. The numerical number as-
signed to each band is to specify the band index n in equation 3.1.
Higher conduction bands not shown in the figure have successive
number up to 65 and only the lowest 15 bands will be used in folling
calculations. Because we are onterested only in the fowest direct
bandgap, the conduction band minimum and valence band maximum are
referred to the states [50) and [40) at k=0. And their second-order
shifts due to Vf are to be found by using equation 3.1. It is evident
from Figure 3-1 that the energy denominator in the equation will be

Zero for certain degenerate k points in the Brillouin zone. If degen-
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erate perturbation scheme is to be used, all degenerate states of the

unperturbed system have to be known exactly. It is not possible in

practical calculations because all the k points of degenerate states can

not be known. However even with the nondegenerate scheme mathe-

matical singularities may not appear in the calculation that will be - '
explained in the following. 1
]

For states near |40) and |50) the discrete summation over k states P
can be transformed into an integration SO
N a3 =

= ______h_ = N L jdsﬁl (3.2) G

I 4 LIPS

= a3 @n)® R
A 4 (S8 ) e
where a is the lattice constant and f1 is the voiume of a unit cell. L—‘
The energy levels near k=0 are expanded as polynomials in k accord- .'{:::.
ing to the k.p theory.*®" ._
-

. — - 2
K;ﬁt .kz I'k . Pnn’l

= Enlo) +
Enc) = En() + 50 + —5 T Enlo) - Ex ()

L (3.3)
2mt

= Enlo) +

lsvm' = S u*no(F) P U (P) By , (3.3)
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where m is the mass of a free electron, m*r is the band edge effective
mass, % is the Planck constant devided by 2K P is the momentum op-
erator, and u(r) is the periodic part of band edge Bloch states.

The second-order energy correction due to states near k=0 is then

@ _ s _|¢nolaVInk)
- @) 0) =r

) ND S ‘zm*' . /
=~ 2L (KnoldvInk) =% amo dk dodd ,
(27y’ SK w (3.5)

where [n0) is the state at k=0 and InE) is a state near k=0. ({f the
quantity l(nOldVlnE)l2 is a slowly varying function near k=0, the

result of equation 3.5 can be further approximated as

0

* 2
AL, é.--z—“-‘-;ﬁ'-'%-(M)(Ak’)l<noldV|nP>l . 3.8)
em)” B

N-=>c, Aﬁ’-?o

It is obvious that the second-order correction is finite for states near
k=0 instead of being divergent. The assumption of nearly canstant
matrix elements is checked allright in AlAs.

Similar procedure can be taken for degenerate states within the

conduction bands.
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EntR) = En (Ro) + -%—(k\ia\- T>nn’ +‘;'K:—\' (Kz- io‘)

+j";2: I(i“‘ha)‘ PM'—'
MW Entke) - Egthe)

2 Entho) + —}f‘—(?é— ko) Pow (3.7Y

The summation over k states is again transformed into an integration
over a small sphere centered at the degenerate k state. The matrix
elements of dV are assumed to be slowly varying in the integration

volume.

[KnRIavINRS
F OEE-ESRY T eny

S K> AR d(cos0)dg
P’ & o 8

nd "
Q:;lfnmldeol {H ~ :“ﬁ}

(3.9)

where k. is the radius of the sphere and P stands for the principle

0
value of the integration.*® The result of second-order correction is

again proved to be finite for degenerate states.
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With the assurance that degenerate states do not cause any
singularity in numerical method. The summation in equation 3.1 is
carried out over the lowest 15 bands at 88 points in the irreducible
(1/48) part of the Brillouin zone (BZ). The BZ of a face-center-cu-
bic fattice is shown in Figure 3-2. Due to its symmetry properties,
the summation over the whole BZ can be reduced to the smallest re-
peatable part which is denoted as the shaded region. The summation
should in principle evaluated as a function of composition x. Because
of the elaborate computations involved, we calculate it in the limits
x=0 and x=1 only. |In most cases the results of the summation term
do not vary drastically between two parent compounds, therefore, a
linear interpolation for it at intermediate x values serves as a good

approximation.

3.2 (AL,GA)AS ALLOY SYSTEM
(Al,Ga)As is the most intensively studied alloy semiconductor for
hetero-structure laser and photodiode. The application of it is based
; "3 upon the close lattice match between GaAs and AlAs. Recently it is

used to construct a hetero-structure type field-effect transistor in

which a high mobility two-dimensional electron gas is separated from

their parent donors.®¢’¢’7

Higher electron mobility is achieved be-
cause the scattering from ionized donor impurities is reduced and it is
useful for high-speed and high-frequency devices.

There have been several determinations of the compositional depen-

dence of the energy bandgap in (Al,Ga)As. And the largest uncer-
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tainty in the assignment of bandgap versus composition is generally
the determination of the composition of the sample. The experimental
data will be examined more carefully when they are compared with the
calculated results. Previous studies on the energy bandgap is re-
viewed here. The first theoretical calculation of bandgap bowing in
(Al,Ga)As was carried out in the electronegativity model.* The in-

trinsic bowing in the VCA was zero and the extrinsic bowing -0.03 eV

was much less than the experimental bowing -0.2eV. The difference

in electronegativity of Al and Ga atoms and a semi-empirical second-

order pertur';bative approach was used for obtaining the extrinsic E»_:i
‘T—_"

bowing. RS
With an EP model for the cation disorder potential, the extrinsic :Z-::Zi

e N

bowing was evaluated by an extensive second-order perturbation cal-
culation over the VCA.?7 A bowing parameter *0.04 eV with a wrong
sign with respect to the downward bowing was obtained. It was sug-

gested taht the EP model be not suitable for the bowing in this ailoy

which will be disproved by us later. The CPA was also applied to '.j'_:.-':
calculate the alloy band structure and scattering rates by Chen and \'
Sher.** The Tight-Binding (TB) Hamiltonian was expanded by Gaus- ;:“
sian-type atomic orbitals and the TB parameters were found by fitting M
band structure to pseudopotential results. The fluctuation potential
was characterized not by the TB parameters but by bonding and anti- '

bonding energies of which the physical meaning is not clear. Howev-
er a bowing parameter of about -0.17 eV was obtained without giving .

any interpretation. -
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Iln order to use equation 3.1, dVC and dVA in our model have to
be defined first. Properties of published EP form factors are exa-
mined before they are applied to set up a suitable model of Vf. Ta-
bles 3-1 and 3-2 summarize the atomic local EP form factors fitted in
GaAs and AlAs respectively.??’¢27€9/70:71  Tha values of cation and
anion disorder potentials are listed in Table 3-3. For the most impor-
tant form factors at first two reciprocal G vectors, the magnitude of
disorders are only 7% and 2% of the cation and anion atomic form fac-
tors respectively. They are one evidence of the smallness of the ai-
loy fluctuation potential. However the anion disorder potential is

large at high q values which corresponds to a not negligible effect of

valence charge transfer mentioned in section 2.3. Supportive infor-
mation of these different As atomic pseudopotentials can be found in L
the empirical tight-binding parameters shown in Table 3-4.72 The SR

site-diagonal parameters of As atom are fitted differently in two pa-

rent compounds in order to generate realistic band structures in each L-.-l
parent compound respectively.

Linear interpolation and extrapolation are used to approximate the
continuous curves of disorder potentials as functions of wave number E_.-
q. The procedure follows exactly discussed in section 2.4. The
atomic MP parameters of Al and Ga are listed in Table 3-5 for the va-

lue of dV(q=0).?* The radius RM will be set equal for both atoms

such that two Coulombic tails cancel each other exactly. The Fourier —v.f
transform of the difference of constant potential welis inside Ry is “

expressed as N
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The second and third terms in the braces in equation 3.9 are less
than 20% of the first term. They exhibit explicitly the nonlical prop-
erties of the ionic core in the MP formulations used here. Their small
contribution in equation 3.9 makes the noniocal MP compatible to the
local EP model.

Because the perturbation calculations are performed upon parent
compounds, the unit volumes and static dielectric constants of them
are used for the screened atomic form factor at q=0. The numerical
value of -0.002 Rydberg is obtained from equation 3.10. The form
factor dvc(q=0) used in reference 37 for substituing Ga and Al atoms
is exactly zero without any explanation. Another set of form factors
for (Al,Ga)As can be found in the study of hetero-structures.”’
Their value of dVC(q=0) was -0.0058 Rydberg. All these choices of
form factor at q=0 are comparable but our adaption of the MP is more
clear in physical interpretation. Piecewise linear disorder potentials

are plotted in Figure 3-3 with respect to qz. The dVC(q) used in
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reference 37 is linearized and plotted in the same figure. Its effect
on bandgap bowing is also calculated in our program in order to make

comparison between different models of Vs-

3.3 BANDGAP BOWING IN (AL,GA)AS

As shown in Figure 3-1 the valence band maximum at k=0 is
three-fold degenerate without the spin-orbit interaction. State ([40)
is taken as the unperturbed level for valence band and |50) repre-
sents the unperturbed conduction level. The intrinsic bowing ob-
tained in the VCA with our choice of EP form factors is zero. The
extrinsic effect of disorder potentials is carried out as described in
section 3.1 with the dV(q) curves shown in Figure 3-3. - The calcu-
lated second-order bandgap shrinkages beyond the VCA in GaAs and
AlAs are summarized in Table 3-6 without the x(1-x) factor ‘in equa-
tion 3.1. The bowing parameter with a wrong sign in reference 37 is
reproduced in our calculation with an approximated dVC Although
our value of *0.004 eV is ten times less than theirs, it is clear that
further comparisons between these two model of dVC are meaningful.
The discripancy may come from the differences in Bloch states, di-
sorder potentials, and sampling k points. The calculated bowing par-
ameter in our model is -0.01 eV with only ch which is close to the
-0.03 eV obtained in reference 5. But with both disorder potentiais
our calculated bowing parameter is -0.125 eV. The good agreement
with exprimental bowing -0.1~~ -0.2 eV proves the significance of the

dVA in a cationically disordered system.
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The energy shifts of |40) and |50) states are listed in Table 3-7.
Because of the band structure associated with the indirect bandgap of
AlAs, detail contributions of each energy band are listed in Table
3-8. According to the perturbation theory, the specified state is
pushed upward by all states below it and pushed downward by ali
states above it. |40) and |50) states are always pushed up by bands
2, 3, and 4 and pushed down by bands higher than 5. |40) has
negligible interaction with band 5 under all three cation disorder po-
tentials. The test cation disorder potential has a large form factor at
q=0 as shown in Figure 3-4. |50) is pushed downward as a net re-
sult from all states within band 5. The calculated bandgap shrinkage
in AlAs in twice as large as in GaAs. The same trend was observed
in the CPA calculation of (Al,Ga)As*® and in the perturbation calcula-
tion of Ga(P,As).’* One reason may be related to this is that the
energy bandgap of GaAs is about one half of those AlAs and GaP.

The effects of form factor at q=0 on bandgap bowing are summar-
ized in Table 3-9. The very large q=0 value of the test potential
does not change the total bowing much because the bowing is mainly
controlled by the anion disorder potential. The determination of the
high q tail in EP form factor is discussed in section 2.4. Monotoni-
cally decreasing tails are chosen for our disorder potentials as shown
in Figure 3-3. If the high q tail ia an abrupt one as shown in Fig-
ure 3-4, its effect on the bandgap bowing is listed in Tables 3-10 and
3-11. The high q tail has little effect on the test potential but large

effect on the anion disorder potential. The choice of a decreasing
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tail is reflected in the better agreement of final bowing with experi-
mental value. The overall result of our model shown in Table 3-7 is
meaningful with respect to small variations in the dV{(q) curves. Its
comparison with experimental data is discussed in the following para-
graphs.

The scatter in experimental data for the bandgap versus composi-
tion in (Al,Ga)As is substantial from earlier investiga-
tions7%’ 7%/ 7€:77°7% and an average curve computed from some scat-
tered data has frequently been used for practical purposes.’® One
reason for this spread in data was the use of a variety of experimen-
tal methods such as Schottky-barrier photo-current’®, electroreflec-
tance’®, and luminescence’® in measuring the bandgap. - The second
reason was the control of composition in sample growth and the evalu-
ation of alloy composition. More recent experimental measurements by
means of low temperature photo-luminescence technique showed a con-
sistent trend in bandgap variation.!*’*®’*! Ag listed in Table 1-4
the bandgap varies linearly for 0.5>x>0 and parabolically for
1.0>x>0.5.

The determination of alloy composition in reference 80 was achieved
by electron microprobe on two independent occasions on every wafer.
These two observations were in good agreement, and therefore the
Uncertainty in x can be reduced to less than 0.02 at any composition.
The maximum bowing at room temperature is about 70 meV around
x=0.8. The maximum bowing in reference 81 is about 160 meV around

x=0.8. There is a lagre deviation in maximum bowing even two sets
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of data have consistent trends of variation. However the alloy com-

position in reference 81 was determined by Auger sputtering techni-
ques whiﬁh might introduce higher uncertainty in x. If the measured
composition of the samples in reference 81 is shifted by about 0.04,
the maximum bowing is reduced from 160 meV to about 100 meV for
0.7>x>0.6. This value is more close to that in reference 80 and our
result. |

The theoretical curve of bandgap bowing is plotted in Figure 3-5
together with the experimental one from reference 80. The magni-
tudes are comparable but the asymmetry trend in experimental curve
can not be expiained by the present theoretical results. One reason
may come from the experimental determination of bandgaps in the in-
direct bandgap regime from optical measurements. The second reason
is that the compositional dependence of bowing ~has not been
calculated explicitly as a function of x. |If the summation in equation
3.1 is computed for some intermediate x values, we can be more cer-
tain about the theoretical trend in bandgap bowing. The spin-orbit
interation is not included in our calculations. We believe its absence
does not affect the theoretical curve much and can not explain the

asymmetry in experimental curve either.
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3.4 (HG,CD)TE ALLOY SYSTEM

The fundamental energy bandgap in (Hg,Cd)Te can vary from 1.6

. ’r.
Koy
4
.

eV of CdTe to -0.3 eV of HgTe. Figure 3-6 illustrates some schemat-
ic band structures of the alloy near zone center. Without spin-orbit

interaction the heavy hole band is two fold degenerate and the band

numbers are consistent with those in Figure 3-1. Figure 3-6a and ;
3-6b are of the normal band structure of zinc-blende semiconductors. E
State |S0) is the conduction band minimum and the valence band max- 7'
imum is three-fold degenerate. The nonparobolic effect is emphasized
in Figure 3-6a for very small energy bandgap. Figure 3-6c repre- ;_;f:;"
sents the so-called inverted band structure in which the state |20) Lﬁz
has the same symmetry properties as those of state |50) in normal :
band structure. Because the EO(X) covers two atmospheric windows ;tl‘-:"'
around 10 um and 5 um wavelengths for x around 0.2 and 0.3 respec- i
tively, (Hg,Cd)Te is a prominant material for infrared detector. A
It covers also the wavelength of the maximum of thermal radiation i
at room temperature and could be useful for measuring temperature :::';-.:
gradients in the environment or in medical applications. Several re- \
views and Conference proceedings have been published on the alloy E.-:::_j:
system in the past few years.?’%2/%3/94/3%  They emphasized diffe- ~_ﬁ'f‘.".
rently on material preparation, chemical and physical preperties, de-
fect study, transport properties, and device applications. As for en- E:‘:‘.-'::-
ergy bandgap bowing, the measured compositional dependence of L
fundamental bandgap have small discripancies in bowing parameter by :
defferent authors. The scatter of data is however not as bad as in
=
-75- s
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(Al,Ga)As. The critical x value for semiconductor-semimetal transi-
tion is around x=0.17. Reference 11 compiled ail the existing data of
measured bandgap and fitted them with a third-order polynomial of
composition x. It will be used as a standard experimental result to
be compared with our theoretical calculations.

Theoretical studies on the electronic structure of (Hg,Cd)Te were
first carried out by Korringa-Kohn-Rostoker method®® and Model
Pseudopotential method®’ in 1971. Compositional dependence of band-
gap was not discussed in the former and the VCA bowing in the lat-
ter was zero. Empirical pseudopotential was used to calculate the
band structure and charge densities near k=0 in the VCA and a linear
bandgap variation was obtained.*® Previously published EP form fac-
tors of HgTe and CdTe®!’*?’?° were considered in reference 88 and
on them some modifications were made in order to improve the agree-
ment between the experimental and theoretical reflectivities. So form
factors from reference 88 are used in our model to construct the ca-
tion and anion disorders. The seven atomic-type potentials in our
model is implicitly contained in the VCA in reference 88.

it is shown in Table 3-12 that the constant siope in the VCA
bandgap, 1.9 eV, can not be explained by cation disorder alone which
makes only 1 eV. This is another justification of our microscopic mo-
del of the one-electron alloy potential. Supportive information for
different Te pseudopotential obtained in HgTe and CdTe can also be
found in literative. In the calculation of band structures of parent

compounds by using angular momentum dependent model pseudopoten-
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tial, different depths were assumed for the potential well of Te atom
which is associated with zero angular momentum 1=0.*" The purpose
was to generate more realistic band structt;ures for both HgTe and
CdTe. In other band structure calculations by using the empirical
tight-binding scheme, different site-diagonal parameters of Te atom
has to be used in order to fit the calculated band structures well in
both parent compounds.?®!’®?

Figure 3-7 shows the linear approximations of cation and anion di-
sorders for (Hg,Cd)Te. The q=0 form factor is obtained again from
model pseudopotential as described in section 3.2. By the parameters

listed in Table 3-13 the second the third terms in the braces of equa-

tion 3.1, which are nonlocal effects, are also less than 20% of the

first term as in (Al,Ga)As. The model pseudopotential form factor
dVC(q=0) is well matched with other local empirical pseudopotential
form factors. The value of dVC(O) is about -0.002 Ry and the effect

of small variation in it will be discussed later.

3.5 BANDGAP BOWING IN (HG,CD)TE

with the same perturbative procedure, the second-order bandgap
shrinakage and energy corrections are summarized in Table 3-14 and
3-15 for x=0, 0.3, and 1.0. A 30% change in dVC(O) introduces an
error in final results less than 1%. The unperturbed states are spe-
cified by their band numbers shown in Figure 3-6. Numbers in par-
entheses include the estimated effect of spin-orbit interaction which

will be discussed later. The exclusion of spin-orbit interaction will
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not affect the qualitative physics but makes the computation tractable.
The factor x(1-x) in equation 3.1 is not included in Tables. The
contribution from each group of energy bands to the second-order
energy shift in HgTe and CdTe are listed in Table 3-16 and 3-17 re-
spectively. The first thing to be discussed is the convergence test
for the number of energy bands used in computation. Within the 15
bands the contribution from the five top most bands to the second-
order energy correction is less than 10%. Their effects are less in
CdTe than in HgTe because their energy denominators are larger in
CdTe. Therefore, 15 bands are good enough for quantitative results
and smaller number of energy bands may be used for rough approxi-
mations.

in the semi-empirical determination of the extrinsic bowing in re-
ference 5, only the lowest conduction band and the upper three va-
lence bands are considered. This "two-band” model has also been
applied to study the compositional dependence of valence-band spin-
orbit splitting and conductive-band effective mass in alloy sys-
tems.?*’*? Detailed relations between the two-band model and rigo-
rous perturbation theory were investigated by Stroud.®* The
electronegativity differe-nce was related to an effective matrix element
in which all the matrix elements in equation 3.1 were assumed to be
constant. This approach is analog to the approximation successfully
Used in calculating the interband absorption of semiconductors. When
the matrix elements were taken out of the summation in equation 3.1,

the inverse band width parameter 1/A in reference 5 was related to
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the Hilbert transformation of density-of-states of conduction band and
valence bands. The assumption of constant matrix elements through-
out the Brillouin zone was later questioned by Altarelli in reference
93. It was shown that the constant effect could not be applied to
different conduction minima which have quite different symmetry
properties.

Table 3-18 shows that the "two-band" model (including bands 2, 3,
4, and 5) is very good for bandgap correction in CdTe. The accura-
cy is less than 1%. One possible reason may come from the cancella-
tion between band 1 and upper conduction bands as shown in table
3-16. The model overestimates the energy correction at x=0.3 for
about 8% and it underestimates the correction by 93% in HgTe. Thé
large error in HgTe is due to the inverted band structure and small
energy bandgap. In HgTe the |20) state interacts strongly with the
lowest valence band. Therefore, the "two-band” model is a good ap-
proximation method for the bowing in alloy systems with direct energy

bandgap 1 eV or larger.

3.6 COUPLING MATRIX ELEMENTS IN (HG,CD)TE

The effects of cation and anion disorders on the coupling matrix
elements in equation 3.1 are discussed in details here in order to
show their physical significance and Troles in bandgap bowing. Table
3-19 shows the intraband coupling between [50) state and |5k) states
in the lowest conduction band. (It is |20) and |2k) in the inverted

band of HgTe.) When compared to tight-banding interpretation of
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energy bands, |50) and 120)' states are of the same symmtry proper-
ties of atomic S orbitals. It is noticed that the effect of cation di-
sorder is very distinct from that of anion disorder for conduction
states. |(50|dVC|5k)|2 is nearly constant throughout the Brillonin
zone and at least two orders of magnitude larger than
](SOIdVAISk)lz. The constant matrix elements show that the effect
of dVC is a localized perturbation which can couple states with large
difference in k values. This is another evidence that our empirical
pseudopotential model is a good representation for cation disorder
which is the difference between chemical natures in the core regions
of two substituting atoms.

The large difference between the matrix elements of dVC and dVA
can be explained from the chargé distribution of |50) and |5k_) states
(or J20) and |2k) states). Figure 3-8 shows the charge densities
near k=0 for |20) and [50) in HgTe and CdTe respectively. They
are obtained from EP wave functions in reference 88 and the projec-
tion (110) plane is illustrated in Figure 3-9. The distribution of
state )50) is centered around cation and anion atoms which are closely
related to atomic S obitals. Figure 3-10 shows the total charge densi-
ties obtained from EP calculation for band S in ZnSe.*¢

There is no total charge densities calculated for (Hg,Cd)Te system
and the charge densities obtained in ZnSe are good approximations.
They may not be exactly the same as in HgTe and CdTe but the simi-
larity should be great. The anti-bonding nature of |Sk) states has

large portion of charge distribution in the area where the covalent
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bonding charge is nearly zero. Their interaction with dVA is negligi-
ble because dVA is derived from the redistribution of valence bonding
charges. The larger value of |(20|ch|2k)|2 in HgTe comes from
the larger charge dens'ity of |20) state around Hg atom than that of
|50) state around Cd atom as shown in Figure 3-8. This is consis-
tent with the trend in ionicity of parent compounds.

The effects of matrix elements on energy correction are directly
shown in Table 3-16 and 3-17. The |50) is always pushed downward
by |5k) states or the ]20) is pushed upward by |[2k) states in HgTe.
The interband coupling between |50) With valence bands is large un-

der dV. and the energy shift depends on the energy denominator in

(o
equation 3.1. With the same reason of small intraband coupling, the
interband coupling of |50) with valence bands is small under d\/A ex-
pect with the lowest valence band |1k) which has strong charge dis-
tribution around the anion atom as show in Figure 3-11. Their ef-
fects are also clearly shown in Table 3-16 and 3-17. (The interband
coupling of [20) state with P-like bands is similar.)

The intra-valence band coupling matrix elements are summarized in
Table 3-20. The variation of |(40|dVA|4k)|2 with respegt to k va-
lues is slightly larger than that of |(50|dV.|Sk)IZ. But both of
them are always within the same order of'magnitude. The spatial
variation of anion disorder is centered around the anion atom but not
as localized as the cation disorder. It is consistently with the physi-

cal origin because the chemical nature within the atomic core is more

localized than the charge redistribution effect. The relative magni-
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tude of matrix elements under dVC and dVA can be interpreted again
by the charge distributions of |40) and ]4k) states. Figure 3-12
shows the distributions of }40) state in HgTe and CdTe. The bond-
ing nature of (40) state keeps the charge distribution oriented in
between adjacent atoms. The maximum of bonding charges shifts from
anion toward catron when x decreased from 1.0 to 0. This variation
in charge distribution can be related to the ionicity of the alloy which
varies from 0.717 of CdTe to 0.65 of HgTe. The ionicity scale of
Phillips and Van Vechten®? is used because it is in better agreement
with pseudopotential calculations®® than the ionicity scale of Paul-
ing.** In CdTe the intraband matrix elements are larger for ¢:iVA
than de because valence electrons are around the anion atom more.
In x=0.3 and HgTe the effect of dVC and dVA are comparable because
valence electrons move toward the cétion atom for small x values.
The effects of matrix elements on the energy correction have to be
considered together with the energy denominator in which the band
structure and bandgap are dominant factors. The {40) state is al-
ways pushed upward but the amount of energy shift varies as a func-

tion of composition.
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3.7 SPIN-ORBIT INTERACTION

All the results discussed so far are obtained without considering
the spin-orbit interaction. The values in the third row of Table 3-14
show a smooth variation over x. Linear interpolation is used to con-
struct a continuous curve of bandgap bowing in which the factor
x(1-x) is included. The unmarked solid curve in Figure 3-13 repre-
sents the experimental fit at 0°K. The dashed curve is the calculated
bowing with both cation and anion disorders but not the spin-orbit
interaction. It is observed to be an overestimated one. It will be
shown that the spin-Orbit effect does not change the magnitude of
couping matrix element although it gives rise to different band struc-
tures. Consequently, the second-order énergy correction is modified
by different energy denominators but not significantly.

From the symmetry considerations, the four-fold degenerate I"s lev-
el with the spin-orbit interaction can be approximated quite accurately

by pure spin states and X, Y, and Z functions. The latter are the

‘three-fold degenerate states |20), {30), and |40) at valence band

maximum without the spin-orbit effect. According to the symmetry

notatrons in reference 99, the expression of ['5 states are

Uy = T (X 1Y) [0

=
N> N
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Wy = = (x-1Y)[pY, (3.11)

o ; where u is the basis function of ra state and ) and Iﬁ) are pure
spin states.
9 The magnitude square of the coupling matrix element of a |"8 state
: can then be reduced to that of X function alone, provided that
(n'k'ldVlY) = (n'k’|dV|X). The latter condition is satisfied in our
method because the cation and anion disorders have the same Td sym-
Z;:E : metry as the space lattice does. So the matrix elements obtained by
us are the same for real cases with spin-orbit interation. The only
correction needed to be done on our results is the energy denomina-
tors comimg from a different band structure. With the same equation
for the coupling matrix elements, the effect of spin-orbit interaction

on our results is estimated by neglected the contribution from one

oy
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heavy-hole band. This is an underestimate for the contribution from
the split-off band. The approximation should be good because the
split-off energy is about 1 eV for all compositions in (Hg,Cd)Te.
The estimated bowing is shown in Figure 3-13 by the marked solid ‘1
f .- curve. |t is mentioned in Chapter 2 that the band width of upper L“’

three valence bands obtained in local empirical pseudopotential is . - N

L2l .

smaller by about 40% than the real measured band width. The error -':::::

of our estimated spin-orbit interaction falls within this accuracy.
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3.8 CONCLUSION

The model developed in Chapter 2 is used in a. perturbative ap-
proach to study the effect of alloy fluctuation potential on energy
bandgap bowing in ternary alloy systems. Two important alloys
(Al,Ga)As and (Hg,Cd)Te are chosen as typical examples. The in-
trinsic bowing parameters within the virtual crystal approximation are
zero for both systems. The extrinsic bowing parat'neter obtained in
second-.order perturbation has contributions from both cation and an-
ion disorders. Stationary non-degenerate perturbation equation is
used and the effects of possible degenerate states are discussed. No
numerical singularities will show up in the calculations as argued in
section 3.1. The summation of coupling matrix elements is carried out

over the lowest 15 bands at 88 points in the irreduable part of the

Brillouiu zone. Convergence test has been examined for the number
of energy bands. It is found that the contribution from the five top
most conduction bands is less than 10% of the energy correction in :'.::”-_
general. Convergence test for the number of k points has not been
Persued because of expensive cost. From the agreement with experi-
mental data, the choice of k points is meaningful.

The validity of using perturbation approach is justified by the cri- SR
terion: 1>>(ME/BW)2. Where ME is the magnitude of coupling matrix

elements which is at most 0.3 eV and BW is an average band width of ‘j,;:f‘

'
3t least 1 eV. The values of empirical pseudopotential model are cho- NSPIS)
sen from previous publications. The standard is to have correct ::l'.::j

\“:.:‘l
band structures for parent compounds and have disorder potential as N
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small as possible. Because of only a few known values for form fac- -
tors obtained from band structure fitting, linear approximation is ap-
plied to construct a continuous dV(q) curve.’ The determination of
dV(q=0) is made on the atomic Model Pseudopotentials of different ca-
tion atoms. Small variation in dV(0) does not affect the bowing par-
ameter at all. For the shape of dV(q) curve at large q values, a mo-

notonically decreasing tail is more meaningful than an abrupt zero

tail. L

From the calculated extrinsic bowing parameter in (Al,Ga)As, anion
disorder plays the dominant role in it. The contribution from anion ,_.
disorder makes 90% of the total bowing. The anion disorder also con- _ L-

tributes 30% of the total bowing in (Hg,Cd)Te. Distinct: effects can

be noticed from the coupling matrix elements under different disorder RN
Potentials. They are related to the physical origins of disorders and '.ﬁ'l-;‘_z:
the charge distributions of corresponding electronic states. Clear
pictures of interactions between disorder potentials and baﬁd edge "
states have been given in section 3.8. The effect of spin-orbit inter- : ~
action on the final bowing is discussed. It does not change the ma- \
trix elements but change the energy levels in ?erturbation equation. ;\--
'ts.effect is estimated for (Hg,Cd)Te by negiection the contribution S
from one heavy-hole band. The error, 40% in total bowing, is within
the accuracy of the band width in local empirical pseudopotential
scheme. l“

Supportive evidence for different pseudopotentials of the same
tom in different parent compounds can be found in empirical tight- . \
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.binding parameters. However, due to different choices in tight-bind-

ing parameters, the common Te atom in (Hg,Cd)Te may be set to
have the same value of parameters.?® Naturely the physical interpre-
tations of bandgap bowing in reference 36 are quite distinct from
ours. The differences are corresponded to the choice of parameters
not to any deviation in basic physics. If the site-diagonal parameters
of Te atom are chosen differently in two parent compounds, the in-

terpretations in reference 36 will be modified to be more consistent

 with ours.




.......

g

LT T TER T

(4
R e AL
_/\ N Xy
T band $§
1
X
1
band 3.4 s
3
Xy
band 2
L, X,
5
L
! vana 1 i
q
L (111) r (100) x L

-

’
«

Y I

Figure 3-1. Calculated band structure of AlAs along two

..A,.
LR RAAA
2o,

Symmetry directions from local empirical form factors. ;;
SN

The number of each band will be used in following calcu- i”'

lations. B

-88-




CAERD

.
L L
. L',
“ f_‘.:-_.
\..‘ t..-__
L T

< i
l. -

5
’l

LI

DR A LA M

L] l"," '
P
".I . Y

P LA

)

-
[g

- .

. E">

R .

- O --
-‘.
-
w .
-
Y

=

- DN
. L
- o™
L AR
~ . A
. .
e o

bR

Figure 3-2. The brillouin zone of a face-center-cubic :3{

lattice. Shaded region is the irreducible 1/48 part. po

-89-




Table 3-1. Empirical pseudopotential form factors of AlAs

in Rydberg.

G2 Al Al Al
(reference 37) (reference 65) (reference 66)

3 -0.148 -0.1475 -0.15

4 0.0625 0.0625 0.07

8 0.026 0.03 0.03

11 0.0625 0.0625 0.09
As As As

3 -0.292 -0.2925 -0.29

i -0.0625 -0.0625 -0.07

8 0.026 0.03 '0.03

11 0.0775 0.0775 0.05
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Table 3-2.

in Rydberg.

c 2

(reference 37)

Empirical pseudopotential form factors of GaAs

Ga

-0.159
0.06
0.0123
0.07

As

-0.299

-0.06
0.0123
0.05

a
(reference 67)

-0.183
0.035
-0.005
0.078
As
-0.307
-0.035
-0.005
0.072
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Ga

(reference 68)

-0.16
0.05
0.01
0.07

As

-0.30

-0.05
0.01
0.05
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Table 3-3.

Empirical pseudopotential form factors of

cation and anion disorders for (Al,Ga)As in Rydberg.

N SN

._
e

AR

. u;.',_.-, ‘\v :‘

ki o

P R
.«
JPAPAPMECE

T’
t

(reference 37)

G 2 dV cation dV anion
3 0,011 -0.007

4 -0.0025 0.0025
8 "000137 ‘0-0137

Table 3-4. Site-diagonal tight-binding parameters for
GaAs and AlAs determined by fitting to bulk pseudopotential

calculation. (from reference 72) Unit is in eV.

GaAs AlAs
Ess (cation) -2.254 ) -1.274
Epp (cation) 1.839 1.588
Ess (anion) -6.593 -6.150
Epp (anion) 1.338 2.168
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Table 3-5. Atomic model pseudopotential parameters of Al,
Ga, and As atoms. .Energy is in double Rydberg (27.2 eV)
and length in Angstrom (A). (from reference 38)

Ga Al As

Ao 1.44 1.38 2.7
Aq 1.58 1.64 (3.08)
A, 1.41 1.92 (2.0)
2.4 2.0 2.0

kp 0.8776 0.9276 1.0065
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(Ry.) dv cation
(reference 37)
0.01 f /\
0
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-0.02 av gnten 4
Ny
Ny
v
-0.03 -

Figure 3-3. Linear approximations of disorder potentials

for (Al,Ga)As.
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Table 3-6.

Second-order shrinkage of the lowest direct
energy gap in meV. Positive sign stands for larger bandgap
than the VCA value,

dV cation dV anion dVv cation
(reference 37)

GaAs -2 -69 +7.3

Estimated -0.01 eV <0.115 eV +0.004 eV
extrinsic .

bowing

parameter




. ST e :::,\
:' \:-_
A :3-.;'
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. Table 3-7. Second-order energy correction of |40) and |50) o
~ states in meV, Arrows indicate the directions of energy :::E\
83 "’-..‘\
?- shift with respect to the VCA energy levels. E;:
> N
dV cation dV anion dV cation -
(reference 37) R
GaAs |[50) $3.5 §54 2.3 L

140) 11.6 $15 15.0 -

AlAs  |50) 118 1143 $4.3 ‘

140) 31 19 ' 5.3

s

P
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Table 3-8 . Contributions from various energy bands on -
the shift of |40) state in AlAs. Unit in meV.
Band Band Band | Band RS
1 2,3,4 5 6-10

dVv cation 0 11 0 12

dV cation 0 : 0 0 45
(reference 37)

dV cation 0 20 0 4
(test) T ¢

W e
R R A
»

m

on the shift of [50) state
dV cation 0 45 436 ) 44
218 .

dV cation 0] 5 $22 32
(reference 37) +15

dV cation 0 130 $115 418 S
(test) 43 ) O
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Table 3-9. The effect of q=0 form factor in cation disorder
on energy shift and bandgap bowing. Unit in meV.

dV cation dV cation (test)

GaAs |50) 13.5 420

140) 41.6 111
AlAs |50) 18 164

140) 1 215
Estimated 0,01 eV 0,05 eV
extrinsic
bowing

parameter




Table 3-10. The effect of high q tail in the test cation

disorder on second-order energy corrections. Unit in meV.

Smooth tail Abrupt tail
|40) 150) |40) 150)
GaAs 11 $20 $12 5
Total: -31 =37
AlAs T15 164 413 469
Total: =79 -82

Table 3-11. The effect of high q tail in the anion

disorder on energy shifts. Unit in meV.

Smooth tail Abrupt tail C
}40) 150) |40) [50) RS
o
R '-'1
GaAs $15 454 13 15 P
-1
Total: =69 -18 {
o
AlAs 19 1143 T4 $41 ]
| I
Total: -162 -45 7?:?
kfj
]
2
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Figure 3-4. Solid curve is the cation disorder in our

model. Dashed curve is the test potential which is the

same as dVC except for O<q2<3. Another variation in the

test potential is the abrupt high-q tail.
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Figure 3-5. Bandgap bowing in (Al,Ga)As. Solid curve is

from theoretical calculation with both disorders. The

points are from measured values in reference 80.
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blend semiconductors. (a) and (b) are for normal band
Structure with small and large bandgaps respectively.

(¢c) is for the inverted band structure. Band numbers

are the same as in Figure 3-1.
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Table 3-12., The calculated slope of VCA bandgap by a

first-order perturbation calculation. The constant slope ;ﬁ;
is about 1.9 eV, Contributions from cation disorder and ?{;
g

anion disorder are listed in eV for four x values.

X dV cation dV anion

I |
PP

0.2 0.987 0.933
0.4 _ 1.018 0.972
0.6 1,02 1.009
0.8 0.995 1.036

TR
R

.
/ - .
1 ‘L-vv, N N 'l N )

e e . . IR
S ; el )
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- Table 3-13. Atomic model pseudopotential parameters of i '
: Hg, Cd and Te atoms. Energy in double Rydberg (27.2 eV) :EI:'E
N '_-::‘-
- and length in Angstron (A). E\
- Hg cd Te
d A, 0.97 0.88 3.04
Aq 1.1 0.98 3.32 :
A, 0.85 1.1 (2.80) 10
Ry 2.6 2.6 2.0 £
kp 0.7213 0.7423 0.9209 S
..
v,
, =
: T
# R
. RS
A
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Table 3-14{. Second-order shrinkage of the lowest direct
energy gap in meV., Positive sign stands for larger bandgap

than the VCA value.

dV cation dV anion dV cation
(test)

HgTe -€5 +21 -65
Total: 44 jif'

(Hg,Cd)Te -138 T =224 -139 -
x=0.3 .
Total: -362 e

Egtimated -0.3 eV -0.146 eV «0,299 eV PR
extrinsic £,1
bowing - : AN
parameter ]

Total: -0.446 eV N

P




Table 3-15. Second-order energy corrections at conduction
and valence states at k=0 in meV. Arrows indicate the
directions of energy shift with respect'to the VCA energy

levels.

X=0 X=0.3 X=10 E?‘j

40) | 20) | 50) | 40) [ 50) | 40) .1_3_}:3'.1‘

AVG 1 244 1 309 t 151 1289 { 147 t 301 -ﬁ |
4

mevy| (t88) | (t268) ] (t130) | (t118) | (4 185) | (1 198) '
¥

AVA tzz t6 t5 t 220 t3 1316

(mev.)| (186) (te) (t5) | (tn8)]| (13) | (t189) e

- fadrl
-.' “.
L .
D - -
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- e
-’ -
5
o
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At
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-
A
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.
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Table 3-16. The convergence test of the energy shifts
of band edge states in HgTe. Unit in meV. The numbers -
in last column represent their percentage in total energy

shifts.

Band Band Band Band Band L
1 2 3,4,5 6-10  11-15 P

dve  |40) t1 T30 283 $54 6% ﬁj}
Total: 4244 =

f20)  t28 1406 $53 155 5% i;i
Total: 4309 ]

iﬁﬂ

av, |40) 0 $11 $26 18 7% i

Total: 427 i

|20) ?6 t0.2 0.1 0.2 2% =
Total: 16 135{




Table 3-17.

of band edge states in CdTe.

Unit in nmeV.

The convergence test of the energy shifts

The numbers

in last column represent their percentage in total energy

shifts.

dve |50)

140)

av, |50)

140)

%9
Total:

t2
Total:

13
Total:

Total:

4138
L 147

$.420
13N

43

$330
1316
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$49

21
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Table 3-18. The validity of two-band model is checked by

the energy shifts of band edge states.

' Two band Whole Error
HgTe |40) 4 350 +27

|20) ¢ 353 t 315
Total -3 44 underestimate 93%

Total -392 -362 overestimate 8%

Total -845 -851 less than 1%
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Table 3-19. Magnitude square of the intra-conduction

band coupling matrix elements.
|(20 |avg |2k)|?

HgTe 5x10°3 - 7x10°3 >
[(50 |ave I5k) |2

(Hg,Cd)Te 1.5x10°3 - 3x10°3 >
=0'3

CdTe 1.5x10°2 - 3x10°3 >

Table 3-20. Magnitude square of the

coupling matrix elements.
[(40]avglsk)| 2
HgTe 1x10'5 - 4x10'4

(Hg,Cd)Te 1x10~% - 1x10=3
x=0.3

AN VAN VN

CdTe 1x1077 - 4x107%

|(20]av, |2k)|?
5x1077 - 1x10-5
[(50]av, [5k)| 2

-6

2x10-° - 2x10-5

2x10-6 - 2x10-5

intra~valence band

l(40]av, [4k)|?

11077 - 1x1074

1x10~4 - 3x10-4

1x10°% - 4x10"4

4
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Figure 3-9. Location of atoms in the primitive cells.
A section of (170) plane is shown bounded by dashed lines.

This bounded plane passes through both atoms A and B.

The extended plane passes through all of the atoms shown

in the diagram. Each atom has four nearest neighbors

bonded tetrahedrally (from reference 96).
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Figure 3-10. Hypotpetical charge density for the first

conduction band (band 5) of ZnSe (from reference 96).
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is the calculated result without spin-orbit iuterﬁction.
Marked solid curve ~——a—— includes the estimated spin-orbit
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APPENDIX C

Chapter 1V
ALLOY BROADENING

4.1 ENERGY LEVELS INSIDE THE BANDGAP

The energy level and origin of point defects in alloy systems is a
mystry by itself. We will concentrate in this chapter on the broaden-
ing of defect levels in the presence of the alloy fluctuation potentral.
And a background review of the energy levels inside the bandgap is

first introduced. There is no allowed electronic state within the for-

bidden energy gap in a perfect crystal. Real crystals are never per-

fect and almost all applications of semiconductors are based on impuri- _.:;‘_

.:__._“
ty effects rather than on the properties of the ideal crystal alone. ~rel
Deliberately added foreign atoms in small concentrations (1-100 ppm), L

so-called dopants, can alter the physical properties of the material
tremendously in a desired fashion. They may increase (or decrease)

the conductivity by many orders of magintude or increase the fu-

‘minescence efficiency. Unintentional trace impurities and other lattice :
imperfections in extremely tiny concentrations (less than 1 ppm) can _t. N
also affect the material quality considerablly - often uncontrollably
and in an undesired manner. All the imperfections can introduce en- L\'
ergy levels within the band continumm and within the bandgaps. We \
shall focus our disscussion only on the discrete energy levels caused - ‘E
r

by point defects within the bandgaps.

“118- ¥




|35
I
S0C

.
7

Ear ol o8 d
by
AL
Ale

a g~
g

In dealing with semiconductors it is useful to classify the defect

levels as shallow and deep. in the following we consider those defect g':
levels shallow which have values not significantly larger than those of .:':
the conventional shallow acceptors and donor;. Effective-Mass theory 5\
provides an adequate description for their ionization energies and :‘:;
wave functions.?® All other defects, having energy levels between “

those of the shallow donors and accptors, are referred to as deep.

In contrast to the shallow levels, the deep levels can have ionization ;:::jl
energies comparable with half the bandgap energy, E9/2. Theoretical r~._
;_.'.'-

understanding of them is not as complete as of shallow levels. Spe-
cial papers and detailed reviews describing the complexity of the sub-
ject and various mathematical approaches to its solution are availa-
ble. 1177108

Experimental methods in defect study is breifly summarized here:

(i) The standard semiconductor assesment techniques, resistivity and

Hall-effect measurements, are indispensable tools to establish the elec- 1
trical properties of shallow donors and acceptors. Their application
to deep level defects is considerably more difficult. (ii) Optical spec-
troscopy is one of the most powerful techniques for the identification
of shallow level defects. For two reasons luminescence has been less

successful in deep-ievel research; the first one is the strong eléc-

{‘-! 20T,
. g
st

tron-phonon interaction and the second one is the lack of good photo-
detectors in certain wavelengths. (iii) Although its usefulness for
defect identification is limited, deep-level transient spectroscopy
(DLTS) technique yields information about all important electrical par- l" <
%
Ry
e
-119- Pl
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ameters of a deep trapping center. Other magnetic and nuclear type
measurements are also available in defect study. It is obvious there
is no single method that is capable of detecting all the desriable in-
formation about both shallow and deep defect levels in a perfect crys-
tal.

In alloy semiconductions previously c_iescribed theories and experi-
mental techniques have been applied for defect assessment. Besides
the difficulties in crystal growth, an additional complication of defect
problem in alloy systems is the non-periodic one-election potential at
any fixed composition. Any discrete energy level obtained in the
VCA may be broadened statistically in the alloy due to the influence
of the alloy fiuctuation potential. The experimentally observed alloy
broadening has been mostly deduced from optical measurements. This
effect on simple acceptors and donors will be studied by a first-order
perturbation calculation in the framework of Effactive-Mass theory.
The effect on acceptor bound-exciton will be discussed later in de-

tails.

4.2 BROADENING OF SIMPLE LEVELS

By simple level we mean that an electron or a hole is bound to a
single defect center. iAl,Ga)As and (Hg,Cd)Te are used again as
typical systems for illustration. The study on shallow levels in
(Al,Ga)As and .(Hg,Cd)Te has been extensive in the past. The ioni-
zation energies of dopants and residual defects are usually deduced

from electrical measurements or luminescence data.'®!’/3%2’183 Wwhen
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the theoretical formula were fitted to experimental data in order to
extract the ionization energy, the shallow levels were always assumed
to be discrete ones with their broadenings neglected. Although accu-
rate experimenta! information about the broadining of shallow levels is
difficult to obtain, we believe that the uncertainties, _ 2 meV and _ 3
meV, associated with measured acceptor ionization engergies in
(Al,Ga)As!®? and (Hg,Cd)Te!?? can be related to the Vf. A quanti-
tative method of calculating the alloy broadening of shallow levels is
developed and tested in this section.

Because of the random nature of Vf, the shape of broadening is
assumed to be a Gaussian distribution. We shall calculate the root
mean square values of the statistical broadening by thé correlation
function of Vf in equation 1.2 and first-order perturbation theory.
The impurity wave function in the V1A is expressed as the product
of an envelope function and the Bloch function at the corresponding

band edge.
Yimg (1) = $(T) Xak(¥) (4.1)

where the total impurity wave funttion is normalized to unity in the
whole volume, the Bloch function is normalized to unity in a primitive
cell (this normalization of Bloch state is differant from that given in
bandgap bowing in Chapter 3) and the envelope function is normalized
to the volume of a premitive cell. The Bloch function is obtained

from the local empirical pseudopotention band structure calculation in
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AN g
,;5;‘

ﬁ.
'
D

»




the VCA and the envelope function is obtained in the Hydrogenic-like
Effective-Mass theory.

The root mean square of broadening can be obtained from

ABey = (Yomp | Y | Yenp)l

2xa-x10 =) §4%n dor)
KXIaVe [ X3+ ZIKX 1 4V | XOI°], 42

where N1 is the volume of the primitive cell; Vf, dVC, and dVA are
defined as before.
Within the scheme of Hydrogenic Effective-Mass theory, the ground

state radius of a shallow level is obtained by
Rimp = 0.53 &o Mo /[ m*, .3)

where 0.53 is the Bohr radius in Angstrom, €, is the static dielectric
*
constant of the semiconductor, and m is the effective mass at corres-

ponding band edge. Equation 4.2 then becomes

AEa“ot‘ = =——— "Am\,\[ x(1-x)]

[Kx1ave 1 XN + F KX T VAl KN ] (o)

L X BN .
. P e dt e e
4

Ll
AR LA
A I L N
RAVEOR X

\
4



.7,1..7?7, ——
3 N . » 1

PN
.
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The first factor in equation 4.4 gives the average probability of find-
ing an election or a hold in a primitive cell. The factor x(1-x)
represents the variation of the average strength of V¢ due to compo-
sitional changes. The last factor in equation 4.4 is the microscopic
contribution of dV to the alloy broadening from one premitive cell.
With clear physical meaning for each term in equation 4.4, the broa-
denings of shallow levels in (Hg,Cd)Te are calculated as an illustra-
tive example.

Table 4-1 and 4-2 summarize the parameters for shallow acceptor
and donor levels in (Hg,Cd)Te respectively. The static dielectric
constant as a function of composition is obtained from the curve in
reference 3. A constant spherically averaged heavy-hole effective
mass 0.45 my is used for all compositions. The measured effective
mass of heavy-hole are 0.40 my for (100) direction, 0.49 My for (110)
direction, and 0.33 md for (111) direction in reference 82. The My
stands for the free-electron mass. Their mathematical average 0.473
My is closed to the calculated spherical mass obtained from the Lut-
tinger parameters in the same reference. The effective mass for elec-
tron as a function of composition is adapted from the k.p theory.!®*
Different energy band parameters used in the k.p calculation may in-
troduce variations in the root mean square value of donoc: states by
about 8% at x=0.48 and 11% at x=0.8. These uncertainties are not im-
portant because the broadening is too small for donor levels to be

determined experimentally.
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Table 4-3 and 4-4 list numerical values of the third term in equa-
tion 4.4. The matrix elements of ch and dVA at band edges are
carried out by using 65 plane waves for the expansion of the EP
Bloch functions. The spin-orbit is neglected in this calculation. The
compositional dependence of matrix elements can be understood from
the arguments in section 3.6.

Figure 4-1 shows the calculated half width as a function of compo-

sition. Two solid curves are the broadenings of shallow acceptor and

donor states. Small numerical values for shallow donor states come
from the large donor radius which corresponds to the small
probability of finding an electron in a unit cell. The broadening of
acceptor states has a maximum of about 6 meV as shown 'by the solid
curve in Figure 4-1. It results from the oversimpled solution of the
hydrogenic-type effective-mass equation. In a more accurate equa-
tion, the impurity potential is screened by a position dependent die-
lectric function and not by a single dielectric constant.!®* The as-
ymptotic value of the dielectric function at large distance is that of
the static dielectric constant but its vaiue for small distance ap-
proaches to unity. With the more accurate treatment in impurity po-

tential, the acceptor ionization energy is about half value of the one

obtained in the hydrogenic-type approximation. Consequently the
hole radius is larger and the broadening is small. The maximum
broadening of acceptor states in the dashed line in Figure 4-1 is

oo

about 3 meV. It is close to the experimental uncertainty in measured -::"_-jfi

acceptor ionization energies.''’ The validity of the single-band ap- . v«i

————
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proximation in Effective-Mass theoty is checked by the following cri-

terion. !’

a v &
[ S e (1, (%.5)

QAimp E,

where a is the lattice constant, Eimp is the ground state ionization

energy of the shallow impurity, and Eg is the bandgap of host crys-

tal. The value of equation 4.5 is less than 1% for x changing from

0.2 to 1.0.

To justify the neglect of spin-orbit interaction, a detailed calcula-
tion including the spin-orbit (SQO) interaction is carried out for
x=0.48. The procedure is quite different from the 65 plane-wave
method used for the band calculation without the SO effect. Within
the total 113 plane waves used as expansion basis, 59 plane waves are
treated exactly and the rest 54 are taken into account through the
modified Lowdin perturbation scheme.*!’1°%/1%¢  There are two ef-
fects from the spin-orbit interaction. The first one is in the VCA.
The spin-orbit interaction will modify the charge distribution of [40)
and |50) states and consequently change the matrix elements of di- -
sorder potentials at band edges. The resulting changes of alloy
broadening due to these modifications of Bloch functions are less than
5%. The second effect is in the fluctuation potential derived from the
difference of the spin-orbit parameters of Hg and Cd atoms. This ef-
fect was found to be negligible. Since it is very expensive to include

these small effects, they are neglected in the calculation.




Besides shallow levels, deep levels may also be broadening in the
alloy. The impurity wave function and ionization energy of a very

localized deep level is a complicated problem. |f the wave function is

assumed to be given in the form of equation 4.1 and the envelope

function has the shape of hydrogenic 1S orbital, the half width of al-
loy broadening can be estimated as a function of ground state radius.
The dashed lines in Figure 4-2 are obtained by using conduction band
Bloch functions, while the solid lines are from valence band Bloch
functions. The intention of this figure is to estimate the alloy broa-
dening of deep levels in (Hg,Cd)Te. Because the wave functions are
probably oversimplified, the results in Figure 4-2 should be inter-
preted with great caution. We feel that the results indicate an upper
bound of about 0.1 eV for the alloy broadening of deep levels in all

alloy systems.

4.3 EXCITONS IN ALLOY SEMICONDUCTORS

In many non-metallic solids, an electron and a hole may be bound
together by their attractive electrostatic interactions, just as an elec-
tron is bound to a proton. The bound electron-hole pair is called an
exciton. It can move through the crystal transporting excitation en-
ergy but it is electrically neutral. The internal structure of intrinsic
excitons has been studied in detail with much quantitative accuracy.
Precise knowledge of them is important not only by itself, but also as
the firm basis for further developments. The behavior of excitons in

the presence of other entities such as neutral impurities, trapping
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potentials, meterial boundary, photons, phonons, excitons or carri-

ers, etc. has also been under intensive investigation.¢7’ 1096/ 1¢e¢
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In the photoluminescence study of point defects in semiconductors,

exciton may bound to varies impurities, defects, and complexes. The

subsequent decay from the bound state, recombination of the electron
with a hole, yields information concerning the center to which the ex-
citon was bound. Early photoluminescence investigations were primar-
ily centered on free-to-bound and bound-to-bound transitions such as
the so-called "edge emission” studies which gave rise to relatively
board emission. In the 1960s the effort shifted to more intensive stu-
dies of the sharp-line emission, aimed at identifying the
bound-exciton impurity transitrons and at achieving a better under-
standing of the residual impurity and defect structure of semiconduc-
tors, which have applications in the electronic industry. The mag-
netic field splittings of these sharp-line transitions make it possible to
differentiate between neutral and ionized donor and acceptor impuri-
ties. In conjunction with systematic impurity-doping experiments,
specific donor and acceptor impurities may be identified.

Transitions involving both free and bound excitons are observed in
alloy semiconductors in spite of the random crystal potential. Narrow
free-exciton peaks have been observed in the absorption spectra of
direct bandgap Ga(As.P).!!" As of the same reason discussed for
shallow level broadening, the large Bohr radius of excitons in direct
bandgap alloy may cause the effect of alloy fluctuation potential small.

Bound as well as indirect excitons, on the other hand, may have a
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much smaller radius and stronger broadening may be expected. Be-
cause of the complicated nature of bound-excitons in alloys, different
anthors attributed different broadened lineshapes to exciton-phonon
interaction??? or the alloy fluctuation potential.?7/287312/113/11%
Quantitative calculations of the broadening due to the Vf are few.
Results from theoretical calculation of the alloy broadening in refer-
ence 43 by using the coherent-potential approximation were 10-20
times smaller than experimental data. A much better agreement bet-
ween theoretical and experimental values was obtained by using the
coherent-potential approximation in reference 28. In Ga(As,P):N al-
loys (1>x>0.6) the luminescence due to the radiative recombination of
nitrogen-bound-excitons is shifted toward lower energies with respect
to excitation spectra. This shift is attributed to the band broadining
generated by local disorder potential around nitrogen atoms. The
magnitude of half width of broadening has a maximun value about 35
meV which is consistent with the simple upper bound obtained in sec-
tion 4.2. The application of our model to the alloy broadening of

bound-exciton spectral line will be discussed in the next section.

4.4 BOUND-EXCITON RECOMBINATION LINE IN (HG,CD)TE

Recent photoluminescence experiment on (Hg,Cd)Te with x=0.48
reported an observation of acceptor bound-exciton recombination line
with a width of 6 meV.?? Because of the very accurate experimental
measurement, it is taken as a quantitative test ground for the model

of the alloy fluctuation potential. The theoretical accuracy now de-
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pends mainly on the correctness of impurity wave functions. The ac-
ceptor bound-exciton is a complicated four-body problem. There are
two holes and an eiectron surrounding a positive charge center. A
self-consistent scheme based upon the spherical model of shallow ac-

** has been developed for acceptor bound-exciton.*! We shall

ceptor
not repeat the derivations here but use directly the formulations in
reference 41.

There are initial and final states for the bound-exciton recombina-

tion line. The root-mean-square of alloy broadening of the recombi-

nation line is defined as

0Bty = [(E1-Ep)-{E-Fp) &)

where the bar represents an ensemble average, E, is the initial state

containing a neutral acceptor and a neutral exciton, and EF is the fi-
nal state which is a simple acceptor state. If only the first order

correction is considered, EI and EF can be approximated as
(o)
Ex = Epe + {VYee| V. 2e | Ve , (+.7)

E

Yae = Ye.se (r) A VYa.se (R) Yeee (B (#.9)

Ea +<¥al Vgl Ve, (4.9)
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V*,gg = Vf(ﬁ) - Y (o) - an?,) ) (4.10)

where A denotes the antisymmetrization operat;:r for the two holes,
‘ve,BE and q’h,BE are the self-consistent electron and hole wave func-
tions of acceptor bound-exciton, and YA is the hole wave fuction of
the neutral acceptor. The alloy fluctaution potential Vf is originally
defined for a valence electron in the one-electron approximation. |If
must bear an additional minus sign for the positively charged holes.

Equation 4.6 is then approximated as

AE:;"o(’ = [ Ve, el Vil Ye.ze) + 2 Yy 88 |"V§|‘Yﬁ.3€>

R ARAL

2 {VYese Vg | Yere)™ + Al Y

+ %< Vase | Vg l‘-\’c\.BE)E

A I ZE AL YRR CAL

Because of the large radius of electron wave function, the small in-
teractions between ve,BE’ \yh,BE’ and VA are neglected.
Each term in equation 4.11 is derived explicitly in Appendix A.

The input parameters needed for the self-consistent calculation of the

.'.“

o

r
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envelope functions are listed in Table 4-5. The use of the spherical
model is justified by the values of parameters. The results of the
spatial integration of envelope functions are listed in Table 4-6. The
length is normalized to the acceptor Bohr radius wihiich is about 104
angstrom. The upper bound of integration is chosen as seven or ten
acceptor Bohr radius around where the magnitude of envelope func-
tion is nearly zero. The matrix elements of cation and anion disorder
potentials at band edges are summarized in Table 4-7. They are ob-
tained from the empirical-pseudopotential calculation in the VCA with
and without the spin-orbit interaction. The disorders are the same
as defined by Figure 3.6. The discripancy in matrix elements with

and without spin-orbit interaction has an effect less than 10% in the

final root-mean-square of broadening. From the values in Table 4-8
the calculated root-mean-squre of broadening is 0.95 meV without the
spin-orbit interaction and 0.9 meV with the interaction. I[f only the
catron disorder pontential is included, the root-mean-square is about
0.37 meV. The anion disorder pontential contributes only 30% in the
bandgap bowing but is 60% in the alloy broadening. The reason is
that there are two holes in the acceptor bound exciton. They inter-
act more strongly with the anion disorder pontential which is derived
from the valence change redistribution. However, the calculated
full-width-half-maximum of 2 meV is only one third of the experimen-
tally measured 6 meV. There must be other mechanisms which may

also cause broadening to the bound-exciton recombination line.
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4.5 J-J COUPLING AND CONCENTRATION BROADENING

The multipiets of acceptor bound-exciton in perfect crystal have
been extensively studied theoretically and experimentally.!!® The
hole-hole coupling is believed to be important for the multiplet struc-
tures. In the so-called "j-j coupling scheme”, two holes of angular
momentum j=3/2 are combined antisymmetrically to form J=0 and J=2
states. (Small j here is the total angular momentum operator which is
written as F in Appendix A. Capital J here is not the effective spin
operator appeared in appendix A). According to atomic theory, in
which the j=3/2 states are formed by the spin-orbit interaction bet-
"ween a P electron and its spin, the energies of the J=2 donblet
should be lower than the J=0 singlet. The existence of the doublet
J=2 states is due to the breakdown of sphrical symmetry in the srys-
tal. For the sh.allow acceptor bound-exciton in the VCA, the J=2
states are indeed lower in energy than the J=0 state as the same in
atomic case.

To investigate quantitatively the j-j coupling of the two holes in
the bound-exciton, the effect of bound electron is neglected for
simplicity. By using the techniques of muitiplet theory for atoms, it
can be shown that the J=2 states are the ground state of the model

Hamiltonian and the energy separation from the J=0 state is given by

8 = — [[{for5e ) Jon ) Jfop 12 (10) ot.3e03)
V“: Whtdy dh (&.12)
%
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where th and Son 2'e defined as before and r"a (rb) is the smaller
(larger) of r and ry- The reason of this splitting is due to the mu-
tual scattering of the two holes between S-like and D-like orbitais.
It is interesting to note that the mutual scattering between D-like or-
bitals makes no contribution to the j-j splitting in this case.

The calculated value of j-j splitting in the VCA by using the self-
consistent fo and 90 functioﬁs is abqut 1 meV. The full-width-half-
maximum of the bound-exciton recombination line is then estimated by
an addition of two Gaussian distributions with AE=0.9 meV respective-
ly, separated by 1 meV. The calculated full width is 2.8 meV which
is about half of the experimental data. Experimental results of
Ga(As.P):N case demonstrated the possibility of detecting the combi-
nation of two Gaussian distributions separated by j-j splitting in opti-
cal spectrum.!!* Although the j-j splitting in this case resulted from
the interaction between an election and a hole, the situation of two
holes should be in principle the same. From the experience of calcu-
lating the j-j splitting in compound semiconductors, however, the
theoretical value is always an overestimate to the experimentally mea-
sured splitting.!!* Therefore, the 3 meV alloy broadening including
the effect of j-j splitting should also be an upper bound of theoretical
prediction.

Because of the small electron effective-mass, the radius of Ve,BE

is very large. The interaction of a neutral bound-exciton complex

with nearest neutral acceptors due to the overlap of impurity wave

.
functions may cause the recombination line to be further broadened. PICES
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The theory of this "concentration broadening” derived in reference 42
is briefly summarized in Appendix B. A quantitative calculation is

carried out for NA-'»1x1016 cm-a

of (Hg,Cd)Te ; x=0.48. The most
important contribution from the envelope functions in concentration
broadening is the decaying tails at large distance which may have
nonzero overlap. In order to have simple equations, the tail of fo(r)
is approximated by an decaying exponential function with proper nor-
malization constant. The D-like go(r) is neglected in the calculation.
The parameters describing the decaying tails are o=2.32, $=0..5,
¥=3.47 in one over length for \Ph,BE’ ‘ye,BE' and VA respectively.
The length is in acceptor Bohr radius which is 104.25 A. The varia-
tions of IO(R), II(R)' and JO(R) as functions of distance R are plot-
ted in Figure 4-3. JI(R) is neglected because it is so small. The
transition energy E(R) is plotted in Figure 4-4 and the full-width-

16 shown in

16

half-maximum of concentration broadening for NA=1x10

15

Figure 4-5 is 0.73 meV. The full width for NA=5x10 and 2.5x10

em™3 are 0.3 and 2 meV respectively. Concentration broadening alone |

can not explain the observed width in the (Hg,Cd)Te samples.
With the correlated alloy and concentration broadenings the root-
mean-square value of a Gaussian distribution is 0.97 meV which is

determined by

2 - 2 2
AEtoto\ = aE altoy + AE concentration . (4.13)
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The total calculated full width of bound-exciton recombination line is

only 3 meV taking into all possible considerations. Carefully worded
in the original paper was there also a macroscopic broadening effect
due to the inhomogenuity of the sample. The possible macroscopic
broadening in the bound-exciton measurement due to the size of ex-
citing laser spot is about 2 meV. The upper bound of the theoretical
broadening is then 5 mev which is in good agreement with the experi-

mental value.

4.6 CONCLUSION

| The roles of simple defect levels and bound-exciton states in alloy
semjconductors are briefly described together with the experimental
assesment techniques for defect levels. The problem of determining
energy levels and physical origins of various boint defects in perfect
crystals is by itself intricate. It becomes even more complicated in
alloys because of the existence of the aperiodic alloy fluctuation po-
tential. When the effect of Vf is added to the VCA results, a dis-
crete level in the virtual crystal bandgap may be broadened into a
continuously distributed energy band. The reason of this statistical
broadening comes from the sampling of local fluctuations in potential
by the bound carrier around the defect center. Carefully measured
values of the broadening can serve as good probes for the existence
of the Vf.
If the defect level is deep within the energy bandgap, the bound

carrier will be strongly localized around the defect center. The sam-
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pling of Vf is emphasized by the large probability of finding the car-
rier in a unit cell and correspondingly the alloy broadening is signifi-
cant. However the ground state wave function of a deep center is
difficult to obtain quantitatively. Instead our investigation on alloy
broadening starts from the shallow impurity level of which the broa-
dening is considerably small. The reason of relative value of alloy
broaneding of shallow and deep levels can be given by simple argue-
ments. The impurity wave function obtained in the VCA is approxi-
mated by an effective-mass type solution. It is expressed as a pro-
duct of an envelope function and a Bloch state at the corresponding
band edge. The Coulombic impurity potential is screened by the
static dielectric constant of the host alloy. The Bloch states at band
edges are used to compute the matrix elements of the disorder poten-
tial in a unit cell. The envelope function is used to calculate the
probability of finding the bound carrier of the center in a unit cell.
The root-mean-square of broadening in first-order is related to the
combined effects of the matrix element of Vf and the probability at
any fixed composition. The more. localized a level is, the larger the
alloy broadening it has. And it is found that the accuracy in impuri-
ty wave function is the most important factor in determining the broa-
dening.

The calculated half-widths of alloy broadening in (Hg,Cd)Te with
X between 0.2 and 1 are shown in Figure 4-1. The trends in matrix
elements of de and dVA at band edges are similar as discussed in

section 3.5. They can be interpreted by the physical definitions of
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disorder potentials and charge distributions of Bloch states. The
maximum broadening of shallow acceptor level obtained in the Hydro-
genic Effective-Mass theory is about 6 meV. But with the more accu-
rate wave functions obtained in the spherical model of shallow accep-
tor, the maximum broadening reduces to about 3 meV which is close
to the uncertainty in measured acceptor binding energies.!®?’1%?
The root-mean-square of broadening of deep levels is roughly estimat-
ed by an oversimplified effective-mass type envelope function. We
believe that the upper bound of alloy broadening for a very localized
level is 0.1 eV. When compared with the 0.03 eV broadening of the
deep isoelectronic N center in Ga(As,P), the simple prediction is a
good one.2*

Accurate measurements on bound-exciton photoluminescence spectra
suggested a 6 meV full-width broadening in (Hg,Cd)Te with x=0.48.
The experimental uncertainty due to the macroscopic inhomogenuity in
samples is about 4 meV. The remaining with of 4 meV should be the
intrinsic property of the sample. The calculated full-width due to the
- fluctuation potential with very accurate impurity wave functions is
about 2 meV. The wave functions are obtained in a self-consistent
scheme in which the realistic valence band structure is inciuded.*!
Besides the effect of Vf, other possible mechanisms are all consid-
ered. Due to the very small electron effective-mass in (Hg,Cd)Te,
there may be interaction between a neutral acceptor bound-exciton
complex and nearby neutral acceptor. This so-called "concentration

broadening” is calculated by the dominant binary interaction of over-
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lapping impurity wave functions. It is only 0.8 meV for the sample
doping. The half-width of broadening of the two correlated mechan-
isms is still 1 mev.

Another mechanism which can cause fine structures in the acceptor
bound-exciton ground state configuration is also investigated. The
interaction of the two holes in the acceptor bound-exciton may intro-
duce a split in ground state energy which is similar to the "j-j split-
ting” in atomic theory. Two holes of total angular momentum j=3/2
can form J=0 and J=2 states in the ground state configuration within
the VCA. The energy separation between these two states in
(Hg,Cd)Te with x=0.48 has an upper bound of 1 meV. If each level
of the fine structure is broadened independently, the recombination
line-shape will be a superposition of two broadened distributions.
There is experimental evidence for this type of broadening in lu-
minescence spectrum.!!* The theoretical value of broadening with all
the considerations is about 75% of the experimental value. It is a
good indication for the correction of our model of the fluctuation po-

tential.




Table 4(-1. Parameters of shallow acceptor levels in

(Hg,Cd)Te. The hole effective mass is 0.45 m, and not a
function of x.

x Dielectric constant Acceptor radius (4)
0.2 17.3 20.4

0.32 15.9 18.7

0.4 15.4 18.1

0.48 14.2 16.7

0.6 13.2 15.5

0.7 12.3 14.5

0.8 11.8 13.9

0.9 1.0 12.9
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Table 4-2. Parameters of shallow donor levels in
(Hg,Cd)Te. All equations are from reference 104 in which

the static dielectric constant was wrong.

Be p2 2 1
“‘e. =14 (Eg + Eg+A)
P2 = 18 + 3x (eV)

E, = 1.79x - 0.26 (eV)

A =1,00 - 0.24x (eV)
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Table 4-3. Magnitude square of matrix elements at valence éﬁ

band edge in (Hg,Cd)Te. Unit in eV.
x dV cation dV anion

0.2 7.784 x 10-2 0.2228 s
0.32 5.76 x 10-2 0.2318 i
0.4 4.121 x 10~2 0.2372
0.48 2.856 x 10-2 0.2425 o
0.6 1.44 x 102 0.2495 Eif
0.7 6.561 x 10-3 0.255 R
0.8 1.936 x 10-3 0.25M
0.9 8.1 x 1053 0.2652
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Table 4-4.

conduction band edge in (Hg,Cd)Te. Unit

0.2
0.32
0.4
0.48
0.6
0.7
0.8
0.9

Cation disorder

1.649
1.56

1.491
1.421
1.30

1.192
1.08
0.964

Anion disorder

3.025 x
2,25 x
1 x
9 x
2.5 «x
4.9 x
6.4, «x
8.1 b

Magnitude square of matrix elements at

in eV,

105
10-6
10-6
10-6
10-3
10-°
10=2
10-5
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- Figure 4-1. The alloy broadening of the shallow donor

! and acceptor states in (Hg,Cd)Te. Dashed curve is shallow

iﬁ acceptor in more accurate Spherical model.
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Table 4-5. Material parameters of (Hg,Cd)Te; x=0.48 for

it 4 3
o

the spherical model (from reference 82).

v
r’r"

v

bandgap = 600 meV
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Luttinger parameters of valence band
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static dielectric constant = 14.2
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Table 4-6. Spatial integration of envelope function for

bound-exciton recombination line in (Hg,Cd)Te; x=0.48. f;*

KL ol ’ K
] t. &~ ‘e K
AP & S

== L7 |toul triar = 0.609

172l ettt
[ . N ‘.'- .

- f°7 |g°h|‘r2dr = 0.0117

IR |f°h|2|goh|2r2dr = 0.042

7 42
111 L7 £l 4r2ar = 1.458
i
. fo7 {goA|"r2dr = 0.0251

N A E N N s = 0.0941
— 1010 lfoe.BE|2r2dr = 3.062 x 1073

1 [07 |foh|2|foA]2r2dr = 0.931

e L

17 |8onl 2 Hgoal iriar 0.0162

~ 107 |f°h|2|g°A|2r2dr = 0.076
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Table 4-6. (continued)
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at conduction and valence band edges in (Hg,Cd)Te; x=0.48. D
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- Numbers in parenthesis are the value for the microscopic R
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contributions of dV at band edges.

(¢v|ch|¢v) (by lavy ldy) (¢c|dvc|bc) (¢CIdVAl40)

dt e

I I""'\l
; .

Without
Spin-orbit -0.153 00985 -10175 -00006 g"‘.:*
interaction

e
.
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AR
PAPRRMTIEN
la Rk B
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pARLI ]

(0.266) (1.381)
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Spin-orbit -00224 00857 ‘1 .194 -00031 - ‘::t'_.-;
interaction b

(0.234) (1.426)
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Table ,-8.
4.12. Unit in eV.

Term

first

second

third

fourth

broadening

Without
spin-orbit
interaction

6.292
(6.292

1.166
(1.029

6.918

-1.773

(-1 0562

0.95 meV
(0.37 meV)

Numerical values of each term in equation

With
spin-orbit
interaction

6.496 x 10~8

1.028 x 10”2
6.079 x 10'6

-1.561 x 1077

0.9 meV

(Numbers in parenthesis are with only dV cation.)
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Figure 4-4. Transition energy versus the separation

between two acceptors in (Hg,Cd)Te; x=0.48.
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intensity versus energy for (Hg,Cd)Te; x=0.48.
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APPENDIX D

Chapter |V
MOBILITY OF HG]-XCDXTE NEAR ZERO BAND GAP

4.1 INTRODUCTION

The two zinc-blende compounds HgTe and CdTe form a continuous
series of alloys Hg, Cd Te, where x is the mole fraction of CdTe in
the alloy. The alloy system has been of great interest in recent years
because of the wide range of its physical properties. The alloy system
is a mixture of a semimetal (HgTe) with a semiconductor (CdTe); the
energy gap Eg in this alloy system varies continuously from -0.3 eV in
HgTe to 1.6 eV in CdTe. The zero .gap alloy is occured at x = 0.164
at 4.2K.

The continuous variation of band parameters with composition x has

caused a great deal of interest in its electrical and optical properties.
Recently there have been many workers investigating the properties of
Hgl_xCdee or its applications. One of the most important applications
of Hg, Cd Te materials is for infrared dectors’’*. The alloy can
make photodiodes. W.W. Anderson® has investigated the band-to-band
tunneling and impurity-to-band tunneling - ion-implanted n* on p
Hg1_xCdee photodiodes. Also this alloy has been used in tunable las-

ers*. In the next section, some structural and optical properties of

this material are briefly introduced.
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Hg,_,Cd Te has shown unusually high electron mobilities® Cu =10’
cmZ/V-s). Recently, J. Bajaj, S.H. Shin, G. Bostrup and D.T.
Cheung of Rockwell International Science Center®* have observed the
maximum electron mobility occured near 40K for near zero band gap
Hg1_xCdee (x 22 0.16). In this chapter we will mainly discuss the
mechanisms for these observations. It is also shown in Figs. 3, 6 and
7, theoretically and experimentally, that the maximum mobilities occured
in Hg1_xCdee at the composition of zero band at fixed temperature
and electron concentration (n), especially for low temperature and low
n. In general, one would expect the mobility to reach a maximum near
the cross point, because the density of states at the Fermi level exhi-
bits a minimum.

Since the alloy, Hg1_xCdee, has so many different features and we
are so interested in the transport propertias, in this chapter we will

discuss the properties of Hg.l-xCdee and its mobility phenomena at

near zero band gap. /4 L1
|

2K

p,cmzl\IS
N

:
R
71
/s Y

n‘. °

Tt
1,

3
=10 )

a
X

Figure 6: Theoretical and experimental composition dependences of electron

Mobility

in Hg1_xCdee mixed crystals with the following electron

Concentrations: n=2x10** cm=!, n=2x10'7 c¢m™ and n=9x10!7 cm™® at 4.2K,
(curves 1-3, respectively), reported in Ref.(31).
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Figure 7: Experimental and theoretical dependences of electron mobility in

Hgl_xCdee at 77 and 300K for samples with the following electron

concentrations: 6x10%* cm™® and 2x10!'® cm~*, reported in Ref.(31).

4.2 GENERAL FEATURES AND PARAMETERS

As mentioned in the previous section, Hg.'_xCd;(Te has an energy
gap , Eg, which varies from -0.3 eV to 1.6 eV. The Eg is the
energy difference (Eg > 0 for normal semiconductor structure, Eg<0 for
inverted band structure). The band structure, whose dispersion rela-
tion was given in chapter |l Eq.(45), for different x are shown in Fig.
8. We can see from the curves in Fig. 8 that if Eg is very close to
zero the conduction band is a V-shaped non-parabolic band, which is

different from the cases of large |Eg|. Also when Eg = 0, from

~155-




Eq.(46) we can see the non-parabolic parameter is very large, and from
Eqs.(47) and (48) we can see the effective mass at the conduction band
edge m*e is very small as shown in Fig. 9.

What is the relation between Eg and x? There are many researchers
working on this problem. Five different representations which are de-
scribing the Eg in terms of x and T are listed below :

(1). Ref.(35)

_ -3
Ea= -0.304 +S5x¢(0 4T + [lJ’S'o-'TI xlo K. (/32)

(2). Ref.(36)

3
- ~4 o Y—n e+ 0§32 K
E;: 0.302 +1.93 X + 5.35 Clo )T(/.zx) o8/

(S). Ref.(39)

(733)
(3). Ref.(37)
E]= -0.30 + .s’.Ox/o.4'T + (/- /0-37') X (134)
(4). Ref.(38)
Eq= ~0.303 4 173 + 56 x0T (1-20T + o2sxt 3%) L
S

- 3
Eg— ~0,25 + 1.5‘7 +5,233X(o+(l-2.03'X)T+O. 327 X (13¢) LJ

Fig. 10(a) shows the five different Eg versus x curves at 4.2K. Fig.

10(b) shows the temperature and composition dependences of the energy \ ;:'-‘f'l'
o~
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gap and the long-wavelength limit Ao of Hg.l_xCdee from Ref.(39).
The left-hand ordinate is the forbidden energy gap expressed in elec-
tron volts, whereas the right-hand one is the corresponding absorption
edge wavelength or photodetector long-wavelength limit. The data il-
lustrate that the composition H90.795Cd0.205Te is the proper choice for
an infrared detector operating at 77K having an energy gap of 0.1 eV
(long-wavelength limit of 12.4 )Jm). The temperature dependences of
the intrinsic carrier concentration with composition as an independent
parameter is illustrated in Fig. 11*°. The non-parabolic conduction
band was used in the calculation. It is shown that the smaller the x,
the higher the intrinsic carrier concentration at fixed temperature.
Fig. 12 depicts longitudinal and transverse phonon frequencies as func-
tions of composition at 77 and 300K’. The LO and TO fréquencies were
deduced by Kramers-Krong analysis of reflectivity measurements.

The method to calculate the transport properties of non-parabolic
band Hg1_xCdee has been described very clearly in chapter Il by
using the variational technique. There are some parameters used in the
calculation of Hg1‘xCdee, listed in Table 2 of Ref.(31), which have
been worked out quite accurately from many workers (refer to

Ref.(31)).
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Figt_n'e 8: Band structures near [° for HgTe, CdTe, and two alloys near the
semimetal-semiconductor transition region. The band strt ctures extend from [*
to |k|=0.18(2X/a) in the A and A directions.
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Figure 10@:Five different relationships betweem energy, Eg, and composition, x,
In Hg1_xCdee at 4.2K as refered to Ref.(35-39).
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4.3 RESULTS AND DISCUSSION
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In this section we will discuss the results of mobility from Rockwel!
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International Science Center?*, It was shown that the maximum mobility
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occured near 40K for Hgo.aq_Cdo.‘GTe near cross point as shown in Figs.

‘ :)l ,c L ',. ".
v gy

I3
1

13, 14. To calculate the mobility and temperature relation, we started
by finding the Eg, M"‘e and o , which are functions of T. Once we
have those data, we can calculate the Fermi level, which is found from

the charge neutrality equation . li"'::

M+ Na = P+ns (37) R




where n and p are the electron and hole concentration respectively, and
N A’ ND are acceptor and donor concentrations. ND. has been assumed
to be temperature independent, because donor states are not virtual
bound states, so that electronsin donor states are uniocalized. In other
words, these electrons are always in conduction band states, leading to
a total ionization of the donors at zero temperature. So we set ND‘ = n
at 4.2K. After we had solved the Fermi levels, we used the variational
principle formulated in chapter Il to solve the mobilities for tempera-
ture from 4.2K to 300K. To explain the experimental data in Ref.(40),

we would like to make some corrections on it. At very high tempera-

ture, such as 300K, samples are already intrinsic. According to our

calculations from the charge neutrality equation, we found out the com- -
positions of Hg.‘_xCdee for sample #81 was about 0.165, and for sam-

ple #82 and #83 were about 0.17. The following calculations were based

on the compositions we found.

14

For low electron concentration n = 10 cm'3, we found the most im-

portant scattering mechanisms are impurity scattering and polar optical

 phonon scattering. Therefore, we found the mobility vs temperature,
shown in Fig. 15, which was pretty close to the experimental data in \
Fig. 13 for temperature higher than S0K. For very low temperature, L
mobility drops as temperature ccols down in experiments. From our
calculations we found the results can not be explained by impurity scat-

tering. Up to now from a survey of other works, all of them have ob-

' D P SR B 2
. B e
. L

e P T .

served the same low temperature phenomena but no one has provided a

)

.

satisfactory explanation so far. Therefore, we believe the low tempera-

.. .
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A

.
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o
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ture mobility properties must be a consequence of some other scattering

mechanism.

We investigated the neutral impurity scattering contribution. We

found, for near zero gap material, at very low temperature, tempera-

ture variation causes the effective mass to change abruptly, due to

Ld
1

‘l "'

Pk el
(D

non-parabolicity effect, and offsets the increase due to neutral impurity

R M
f

scattering shown in Fig. 13 as temperature varies in the 4.2K - 40K

Ll_f.‘, NG
PRy
e

A 11,

S p AL
.

range.

o
Syt
IR '

We believe the low temperature phenomena is due to resonance scat-

y
(R

-

tering effect. It is believed that a number of Hg vacancies remains
after annealing Hgl_xCdee. And the experimental evidences of reso-
nant acceptor states were reported in HgTe and Hg1_xCd xTe“"‘.
Ref.(41) gives the activation energies of EAI of the resonance Al as a
function of the energy gap Eg as shown in Fig. 16, which can be plot-
ted as Fig. 17 by setting the zero energy at conduction band edge to
express the location of resonance level. Because no EM data available
to us for energy gap greater than 10 meV, in our calculations, we use
EA‘l by interpolating from Fig. 17. The relation can be expressed ap-

proximately by the following linear equation: s

1.5'.35"0-5'74"5] Eg 20 .
Y @38) RS
15.35 +o. ILZ‘E] E}<°

m
|
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We believe the acceptors are double acceptor mercury vacancies*Z.
From helium spectrum®® as shown in Fig. 18, we believe the resonance
energy, defined by Er' is the energy between ground state 1s and
higher levels. The most important resonance occurs between 1s and 2s
states. E‘_ is shown in Figs. 16, 17 as a function of energy gap Eg:
the ionization energy for helium is about 1.25-E'_. in our model, we
assume the energy of acceptor level EA is about 1.25-Er or 1.50-Er,
which give pretty good agreement of electron concentrations with exper-
iments.

Assume the acceptor concentration is 1.0 x 1016 cm-3. From charge
neutrality equation we solved the Fermi energy. Ef, EA and Er are
shown in Figs. 19 and 20 for EA = 1.25-Er and EA = I.SO'Er, respec-
tively. It is very interesting to see the energy differel;ce betwen Ef
and Er. 'We believe if the energy difference |Ef - Erl is less than
about 1 meV the resonance scattering occurs. What does th§ 1 meV
difference energy come from? We believe it comes from the thermal en-
ergy. Since the resonance level is a function of energy gap and there

is no existing data of E_ for energy gap greater than 10 meV, and as

r
there are at least five different expressions of energy gap as we men-
tioned earlier in this chapter, we think 1 meV is only approximated.
One way to look at the resonance scattering, which we beliave might be
valid, is that resonance scattering occurs whenever the energy differ-
ence between Ef and Er is less than the thermal energy. It is also

very interesting to see the fact that resonance scattering occurs below

45K for all the samples. Therefore, we believe resonance scattering
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dominates at low temperature 4.2K - 45K and which causes the mobility

to drop as the temperature is lowered.
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Figure 16: Experimental variations of the resonance energy E_. as a function of
!t)hedenergy gap Eg. The zero energy is defined as the top of the valence
and.
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Figure 17: Energy difference between the resonance level and the bottom of the
conduction band as a function of the energy gap Eg for Hg,_xCdee alloys

according to the resuits reported in Fig. 16.
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Figure 18: The experimental energy levels of helium. The scale on the left
represents ionization potential in electron voits. The numbers next to the
levels are the wave number corresponding to the ionization potential, expressed

in units of 10’ cm™. The dotted lines represent the energy levels of hydrogen
(nuclear charge = Z-1 = 1),
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Figure 19(a): The temperature dependences of EA, Ef and E’_ on EA=1,25%*E .
The sample is #81 in Fig.14, ’
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Figure 19(b): The temperature dependences of EA, Ef and Er on EA=1.25*EI_. --_.jl:'_
The sample is 483 in Fig.14.
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Figure 19(c): The temperature dependences of EA, Ef and Er
The sample is #82 in Fig.14.
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Figure 20(a): The temperature dependences of EA, Ef and Er on EA=1.5*E'_.
The sample is #81 in Fig.14.
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Figure 20(b): The temperature dependences of EA, Ef and Er on EA=1.5*Er.
The sample is #83 in Fig.14.
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Figure 20(c): The temperature dependences of EA, Ef and Er on EA=1.5*E’_.
The sample is 482 in Fig.14.




4.4 CONCLUSION

Impurity scattering and polar optical phonon Scattering are the two
most important scattering mechanisms in Hg1_xCdee. For low electron
concentration and narrow band gap Hg1_xCdee at very low tempera-
ture, resonance scattering may play a significant role in the mobility-
decrease phenomena.

We found that if the energy difference between Fermi level and reso-

nance level is less than 1 meV, resonance scattering occurs which low-

ers the mobility value. It can also be noticed that resonance scattering
is important at low temperature only. Most people think of the mobility
as reaching a maximum value near the cross point, zero belmd gap, be-
cause the density of states at the Fermi level exhibits a minimum. But
from our investigation we conclude that it is not always true. We be-
lieve the maximum mobility is due to the starting point of resonance
scattering, which lowers the mobility vaiue. Once resonance scattering
is reduced, the mobility will be dominated by impurity scattering again
aven at very low temperature. This phenomena was observed by C.
Finck, etc., in Ref.(42). They have seen a dip in mobility at low
temperature T1 of Hg1‘xCd~xTe shown in Fig. 2 of Ref.(42). But away
from T1, even higher or lower temperature range, the mobility is high-
er than the mobility at T1. That is because the resonance scattering
dominates at temperature close to T1 and impurity scattering dominates

at other temperature ranges.
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